{"title":"Dynamic Life Cycle Assessment of Integrated Production of Steel and Methanol","authors":"Ankur Gaikwad, Dr. Stefan Schlüter","doi":"10.1002/cite.202400030","DOIUrl":null,"url":null,"abstract":"<p>The dynamic carbon footprint profile of methanol production from steel mill gases is affected by fluctuations of steel mill gas flow rates and compositions, as well as the composition of electricity mix. The cross-industrial network of steel mill, gas conditioning, hydrogen production, chemical synthesis, and power generation was simulated under dynamic conditions. Dynamic life cycle assessment (LCA) was carried out for computing the dynamic carbon footprint profile in 15-min resolution for the integrated system of steel and methanol production. The dynamic LCA indicated that the CO<sub>2</sub> emissions in a power plant, electrolytic hydrogen demand, and variations in electricity mix were the major drivers of the fluctuations in the total carbon footprint. Dynamic LCA is useful for quantifying temporal uncertainty in environmental impacts. This insight can be used to analyze uncertainty in impacts for downstream products, processes, and use cases.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1177-1186"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic carbon footprint profile of methanol production from steel mill gases is affected by fluctuations of steel mill gas flow rates and compositions, as well as the composition of electricity mix. The cross-industrial network of steel mill, gas conditioning, hydrogen production, chemical synthesis, and power generation was simulated under dynamic conditions. Dynamic life cycle assessment (LCA) was carried out for computing the dynamic carbon footprint profile in 15-min resolution for the integrated system of steel and methanol production. The dynamic LCA indicated that the CO2 emissions in a power plant, electrolytic hydrogen demand, and variations in electricity mix were the major drivers of the fluctuations in the total carbon footprint. Dynamic LCA is useful for quantifying temporal uncertainty in environmental impacts. This insight can be used to analyze uncertainty in impacts for downstream products, processes, and use cases.
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!