M. D’Amato, M. A. Grignano, P. Iadarola, T. Rampino, M. Gregorini, S. Viglio
{"title":"The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis","authors":"M. D’Amato, M. A. Grignano, P. Iadarola, T. Rampino, M. Gregorini, S. Viglio","doi":"10.3390/ijms25168633","DOIUrl":null,"url":null,"abstract":"While COVID-19’s urgency has diminished since its emergence in late 2019, it remains a significant public health challenge. Recent research reveals that the molecular intricacies of this virus are far more complex than initially understood, with numerous post-translational modifications leading to diverse proteoforms and viral particle heterogeneity. Mass spectrometry-based proteomics of patient serum/plasma emerges as a promising complementary approach to traditional diagnostic methods, offering insights into SARS-CoV-2 protein dynamics and enhancing understanding of the disease and its long-term consequences. This article highlights key findings from three years of pandemic-era proteomics research. It delves into biomarker discovery, diagnostic advancements, and drug development efforts aimed at monitoring COVID-19 onset and progression and exploring treatment options. Additionally, it examines global protein abundance and post-translational modification profiling to elucidate signaling pathway alterations and protein-protein interactions during infection. Finally, it explores the potential of emerging multi-omics analytic strategies in combatting SARS-CoV-2.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168633","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While COVID-19’s urgency has diminished since its emergence in late 2019, it remains a significant public health challenge. Recent research reveals that the molecular intricacies of this virus are far more complex than initially understood, with numerous post-translational modifications leading to diverse proteoforms and viral particle heterogeneity. Mass spectrometry-based proteomics of patient serum/plasma emerges as a promising complementary approach to traditional diagnostic methods, offering insights into SARS-CoV-2 protein dynamics and enhancing understanding of the disease and its long-term consequences. This article highlights key findings from three years of pandemic-era proteomics research. It delves into biomarker discovery, diagnostic advancements, and drug development efforts aimed at monitoring COVID-19 onset and progression and exploring treatment options. Additionally, it examines global protein abundance and post-translational modification profiling to elucidate signaling pathway alterations and protein-protein interactions during infection. Finally, it explores the potential of emerging multi-omics analytic strategies in combatting SARS-CoV-2.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).