{"title":"Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning","authors":"Weilin Wang, Guoqing Sang, Qiang Zhao, Yang Liu, Guangwen Shao, Longbin Lu, Mintian Xu","doi":"10.2166/nh.2024.004","DOIUrl":null,"url":null,"abstract":"\n \n Peak discharge is an essential element of hydrological forecasting. Due to rapid outbreaks of flash floods in hilly areas and the lack of measured data, the fast and accurate estimation of peak discharge is crucial for flash flood hazard management. Three machine learning algorithms were applied to estimate peak discharge; this estimation was compared with the results of hydrological–hydraulic models, and the results were verified with measured watershed data. In this paper, 10 hydrological and geomorphological parameters were selected to predict the flood peak discharge in 103 watersheds in Taiyi Mountain North District. The results show that the particle swarm optimization backpropagation (PSO-BP) neural network model outperforms the BP neural network and random forest regression in prediction performance. PSO-BP has a lower mean absolute error (2.51%), root mean square error (3.74%), and mean absolute percentage error (2.74%) than the other models, which indicates that PSO-BP has high prediction accuracy. Importance analysis revealed that rainfall, early impact rainfall, catchment area, and rain intensity are the key input parameters of PSO-BP. The proposed method was confirmed to be a fast and relatively accurate algorithm for estimating the peak discharge of flash floods in ungauged basins.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2024.004","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Peak discharge is an essential element of hydrological forecasting. Due to rapid outbreaks of flash floods in hilly areas and the lack of measured data, the fast and accurate estimation of peak discharge is crucial for flash flood hazard management. Three machine learning algorithms were applied to estimate peak discharge; this estimation was compared with the results of hydrological–hydraulic models, and the results were verified with measured watershed data. In this paper, 10 hydrological and geomorphological parameters were selected to predict the flood peak discharge in 103 watersheds in Taiyi Mountain North District. The results show that the particle swarm optimization backpropagation (PSO-BP) neural network model outperforms the BP neural network and random forest regression in prediction performance. PSO-BP has a lower mean absolute error (2.51%), root mean square error (3.74%), and mean absolute percentage error (2.74%) than the other models, which indicates that PSO-BP has high prediction accuracy. Importance analysis revealed that rainfall, early impact rainfall, catchment area, and rain intensity are the key input parameters of PSO-BP. The proposed method was confirmed to be a fast and relatively accurate algorithm for estimating the peak discharge of flash floods in ungauged basins.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.