Helicase HELQ: Molecular Characters Fit for DSB Repair Function

IF 4.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Molecular Sciences Pub Date : 2024-08-08 DOI:10.3390/ijms25168634
Yuqin Zhao, Kai-Yuan Hou, Yu Liu, Yinan Na, Chao Li, Haoyuan Luo, Hailong Wang
{"title":"Helicase HELQ: Molecular Characters Fit for DSB Repair Function","authors":"Yuqin Zhao, Kai-Yuan Hou, Yu Liu, Yinan Na, Chao Li, Haoyuan Luo, Hailong Wang","doi":"10.3390/ijms25168634","DOIUrl":null,"url":null,"abstract":"The protein sequence and spatial structure of DNA helicase HELQ are highly conserved, spanning from archaea to humans. Aside from its helicase activity, which is based on DNA binding and translocation, it has also been recently reconfirmed that human HELQ possesses DNA–strand–annealing activity, similar to that of the archaeal HELQ homolog StoHjm. These biochemical functions play an important role in regulating various double–strand break (DSB) repair pathways, as well as multiple steps in different DSB repair processes. HELQ primarily facilitates repair in end–resection–dependent DSB repair pathways, such as homologous recombination (HR), single–strand annealing (SSA), microhomology–mediated end joining (MMEJ), as well as the sub-pathways’ synthesis–dependent strand annealing (SDSA) and break–induced replication (BIR) within HR. The biochemical functions of HELQ are significant in end resection and its downstream pathways, such as strand invasion, DNA synthesis, and gene conversion. Different biochemical activities are required to support DSB repair at various stages. This review focuses on the functional studies of the biochemical roles of HELQ during different stages of diverse DSB repair pathways.","PeriodicalId":49179,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms25168634","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The protein sequence and spatial structure of DNA helicase HELQ are highly conserved, spanning from archaea to humans. Aside from its helicase activity, which is based on DNA binding and translocation, it has also been recently reconfirmed that human HELQ possesses DNA–strand–annealing activity, similar to that of the archaeal HELQ homolog StoHjm. These biochemical functions play an important role in regulating various double–strand break (DSB) repair pathways, as well as multiple steps in different DSB repair processes. HELQ primarily facilitates repair in end–resection–dependent DSB repair pathways, such as homologous recombination (HR), single–strand annealing (SSA), microhomology–mediated end joining (MMEJ), as well as the sub-pathways’ synthesis–dependent strand annealing (SDSA) and break–induced replication (BIR) within HR. The biochemical functions of HELQ are significant in end resection and its downstream pathways, such as strand invasion, DNA synthesis, and gene conversion. Different biochemical activities are required to support DSB repair at various stages. This review focuses on the functional studies of the biochemical roles of HELQ during different stages of diverse DSB repair pathways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
螺旋酶 HELQ:适合 DSB 修复功能的分子角色
从古生菌到人类,DNA螺旋酶HELQ的蛋白质序列和空间结构高度保守。除了以 DNA 结合和转位为基础的螺旋酶活性外,最近还证实人类 HELQ 具有 DNA 链断开活性,与古生菌 HELQ 同源物 StoHjm 相似。这些生化功能在调节各种双链断裂(DSB)修复途径以及不同DSB修复过程的多个步骤中发挥着重要作用。HELQ 主要促进同源重组(HR)、单链退火(SSA)、微组蛋白介导的末端连接(MMEJ)等依赖末端切除的 DSB 修复途径的修复,以及 HR 中的子途径合成依赖性链退火(SDSA)和断裂诱导复制(BIR)。HELQ 的生化功能在末端切除及其下游途径(如链侵入、DNA 合成和基因转换)中具有重要作用。支持不同阶段的 DSB 修复需要不同的生化活动。本综述将重点关注 HELQ 在不同 DSB 修复途径的不同阶段所发挥的生化作用的功能研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Molecular Sciences
International Journal of Molecular Sciences Chemistry-Organic Chemistry
CiteScore
8.10
自引率
10.70%
发文量
13472
审稿时长
17.49 days
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Three Years On: The Role of Pegcetacoplan in Paroxysmal Nocturnal Hemoglobinuria (PNH) since Its Initial Approval Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-like Behavior and Locomotor Activity in the Absence of Genotypic Variation Integrated Transcriptomic–Metabolomic Analysis Reveals the Effect of Different Light Intensities on Ovarian Development in Chickens The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy One-Step Genetic Modification by Embryonic Doral Aorta Injection of Adenoviral CRISPR/Cas9 Vector in Chicken
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1