Investigation of open air and under water laser surface texturing on surface roughness and wettability of Al-Mg alloy

Prashant Kaushik, Shashi Prakash
{"title":"Investigation of open air and under water laser surface texturing on surface roughness and wettability of Al-Mg alloy","authors":"Prashant Kaushik, Shashi Prakash","doi":"10.1177/14644207241269652","DOIUrl":null,"url":null,"abstract":"Aluminum-Magnesium (Al-Mg) alloy is widely used in aerospace and marine related applications due to its high corrosion resistance, tensile strength and ductility properties. However, due to hydrophilic nature, its applications are restricted in areas where water absorption may cause problems like corrosion. In this research work, high speed laser texturing was carried out on Al-Mg alloy (AA5754) to improve hydrophobic properties of the material surface. Four different types of pattern, namely lines, grids, concentric circles and concentric rectangles were created on the material surface using a nanosecond fiber laser. Scanning speed was varied at two levels i.e., 500 mm/s and 1000 mm/s. Line density of texture designs was also varied at two levels of 10 lines per mm and 15 lines per mm. The texturing process was carried out in two different processing environment namely open air and in underwater condition. Distilled water with 1 mm thickness above the surface was used during underwater texturing condition. Surface morphology, surface roughness and wettability of all the surfaces were studied for all the experimental conditions. It was observed that lower scanning speed of 500 mm/s resulted in higher values of surface roughness and contact angles. Also, larger texture density leads to lower surface roughness and contact angles for all the pattern designs. Among all the studied texture patterns, grid structures, textured at 500 mm/s of scanning speed resulted in largest surface roughness and surface hydrophobicity.","PeriodicalId":20630,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","volume":"193 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241269652","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum-Magnesium (Al-Mg) alloy is widely used in aerospace and marine related applications due to its high corrosion resistance, tensile strength and ductility properties. However, due to hydrophilic nature, its applications are restricted in areas where water absorption may cause problems like corrosion. In this research work, high speed laser texturing was carried out on Al-Mg alloy (AA5754) to improve hydrophobic properties of the material surface. Four different types of pattern, namely lines, grids, concentric circles and concentric rectangles were created on the material surface using a nanosecond fiber laser. Scanning speed was varied at two levels i.e., 500 mm/s and 1000 mm/s. Line density of texture designs was also varied at two levels of 10 lines per mm and 15 lines per mm. The texturing process was carried out in two different processing environment namely open air and in underwater condition. Distilled water with 1 mm thickness above the surface was used during underwater texturing condition. Surface morphology, surface roughness and wettability of all the surfaces were studied for all the experimental conditions. It was observed that lower scanning speed of 500 mm/s resulted in higher values of surface roughness and contact angles. Also, larger texture density leads to lower surface roughness and contact angles for all the pattern designs. Among all the studied texture patterns, grid structures, textured at 500 mm/s of scanning speed resulted in largest surface roughness and surface hydrophobicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
露天和水下激光表面纹理加工对铝镁合金表面粗糙度和润湿性的影响研究
铝镁合金(Al-Mg)具有高耐腐蚀性、抗拉强度和延展性,因此被广泛应用于航空航天和海洋相关领域。然而,由于其亲水性,在吸水可能导致腐蚀等问题的领域,铝镁合金的应用受到了限制。在这项研究工作中,对铝镁合金(AA5754)进行了高速激光纹理加工,以改善材料表面的疏水性。使用纳秒光纤激光器在材料表面制作了四种不同类型的图案,即线条、网格、同心圆和同心矩形。扫描速度分为两个等级,即 500 毫米/秒和 1000 毫米/秒。纹理设计的线条密度也在每毫米 10 条和每毫米 15 条两个水平上变化。纹理加工在两种不同的加工环境中进行,即露天和水下条件。在水下纹理加工条件下,使用的是比表面厚 1 毫米的蒸馏水。在所有实验条件下,对所有表面的表面形态、表面粗糙度和润湿性进行了研究。结果表明,扫描速度越低(500 毫米/秒),表面粗糙度和接触角值越高。此外,纹理密度越大,所有图案设计的表面粗糙度和接触角越低。在所有研究的纹理图案中,以 500 毫米/秒的扫描速度纹理的网格结构的表面粗糙度和表面疏水性最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.30%
发文量
166
审稿时长
3 months
期刊介绍: The Journal of Materials: Design and Applications covers the usage and design of materials for application in an engineering context. The materials covered include metals, ceramics, and composites, as well as engineering polymers. "The Journal of Materials Design and Applications is dedicated to publishing papers of the highest quality, in a timely fashion, covering a variety of important areas in materials technology. The Journal''s publishers have a wealth of publishing expertise and ensure that authors are given exemplary service. Every attention is given to publishing the papers as quickly as possible. The Journal has an excellent international reputation, with a corresponding international Editorial Board from a large number of different materials areas and disciplines advising the Editor." Professor Bill Banks - University of Strathclyde, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Quantification of delamination resistance data of FRP composites and its limits Thick-wire GMAW for fusion welding of high-strength steels Evaluation of the performance enhancement of asphalt concrete via graphene oxide incorporation: A multi-test approach Recent advancements in self-healing materials and their application in coating industry Investigations on microstructural, mechanical, and tribological properties of Al-Cu-Ni alloy in cast, heat-treated, and strain-softened conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1