Advancements in Nanotechnology-Based PEDOT and Its Composites for Wearable Thermoelectric Applications

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Small Science Pub Date : 2024-08-07 DOI:10.1002/smsc.202400149
Yuran Wang, Wei Dai, Tian Wu, Hongyan Qi, Junhui Tao, Chuanhui Wang, Jie Li, Xiuying Cao, Liangpeng Liu, Liuyi Fang, Chun Wang, Nengyuan Gong, Yuxuan Liu, Xinqi Chen, Wan Jiang, Xiaolin Wang
{"title":"Advancements in Nanotechnology-Based PEDOT and Its Composites for Wearable Thermoelectric Applications","authors":"Yuran Wang, Wei Dai, Tian Wu, Hongyan Qi, Junhui Tao, Chuanhui Wang, Jie Li, Xiuying Cao, Liangpeng Liu, Liuyi Fang, Chun Wang, Nengyuan Gong, Yuxuan Liu, Xinqi Chen, Wan Jiang, Xiaolin Wang","doi":"10.1002/smsc.202400149","DOIUrl":null,"url":null,"abstract":"Thermoelectric materials’ unique merits attract considerable attention. Among those merits, the straight transformation between heat and electricity makes this material potential. The energy of the human body is released in the form of heat, which can be transformed into effective electricity by wearable thermoelectric materials. The nanotechnology-based materials improve thermoelectric properties and heat absorption abilities for nanostructures will help maintain good electrical conductivity and reduce thermal conductivity. Poly(3,4-ethylenedioxythiophene) (PEDOT) is extensively investigated for its high conductivity, flexibility, good transparency, and so on. This article reviews its mechanism and describes the preparation techniques and thermoelectric properties of nanotechnology-based PEDOT, inorganic semiconductor composite, and low-dimensional metal composite thermoelectric materials. The recent research progress on PEDOT-based thermoelectric materials, the application of wearable low-dimensional PEDOT-based thermoelectric materials, and methods to improve the thermoelectric performance of PEDOT-based composite materials, device design, and commercialization are specifically discussed.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"39 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric materials’ unique merits attract considerable attention. Among those merits, the straight transformation between heat and electricity makes this material potential. The energy of the human body is released in the form of heat, which can be transformed into effective electricity by wearable thermoelectric materials. The nanotechnology-based materials improve thermoelectric properties and heat absorption abilities for nanostructures will help maintain good electrical conductivity and reduce thermal conductivity. Poly(3,4-ethylenedioxythiophene) (PEDOT) is extensively investigated for its high conductivity, flexibility, good transparency, and so on. This article reviews its mechanism and describes the preparation techniques and thermoelectric properties of nanotechnology-based PEDOT, inorganic semiconductor composite, and low-dimensional metal composite thermoelectric materials. The recent research progress on PEDOT-based thermoelectric materials, the application of wearable low-dimensional PEDOT-based thermoelectric materials, and methods to improve the thermoelectric performance of PEDOT-based composite materials, device design, and commercialization are specifically discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米技术的 PEDOT 及其复合材料在可穿戴热电应用中的进展
热电材料的独特优点备受关注。其中,热与电的直接转化使这种材料具有潜力。人体能量以热的形式释放,可穿戴热电材料可将热能转化为有效的电能。基于纳米技术的材料可提高热电特性和纳米结构的吸热能力,有助于保持良好的导电性并降低导热性。聚(3,4-亚乙二氧基噻吩)(PEDOT)因其高导电性、柔韧性和良好的透明度等优点而被广泛研究。本文回顾了其机理,介绍了基于纳米技术的 PEDOT、无机半导体复合材料和低维金属复合热电材料的制备技术和热电特性。具体讨论了 PEDOT 基热电材料的最新研究进展、可穿戴式低维 PEDOT 基热电材料的应用,以及提高 PEDOT 基复合材料热电性能、器件设计和商业化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
期刊最新文献
Multi-Organ Microphysiological Systems Targeting Specific Organs for Recapitulating Disease Phenotypes via Organ Crosstalk Inflammatory or Reparative? Tuning Macrophage Polarization Using Anodized Anisotropic Nanoporous Titanium Implant Surfaces Ultralow Lattice Thermal Conductivity of Zintl-Phase CaAgSb Induced by Interface and Superlattice Scattering Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons Flexible Phototransistors on Paper: Scalable Fabrication of PEDOT:PSS Devices Using a Pen Plotter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1