Ahmed Jamal Abdullah Al-Gburi , Nor Hadzfizah Mohd Radi , Tale Saeidi , Naba Jasim Mohammed , Zahriladha Zakaria , Gouree Shankar Das , Akash Buragohain , Mohd Muzafar Ismail
{"title":"Superconductive and flexible antenna based on a tri-nanocomposite of graphene nanoplatelets, silver, and copper for wearable electronic devices","authors":"Ahmed Jamal Abdullah Al-Gburi , Nor Hadzfizah Mohd Radi , Tale Saeidi , Naba Jasim Mohammed , Zahriladha Zakaria , Gouree Shankar Das , Akash Buragohain , Mohd Muzafar Ismail","doi":"10.1016/j.jsamd.2024.100773","DOIUrl":null,"url":null,"abstract":"<div><p>Printed electronics, fueled by graphene's conductivity and flexibility, are revolutionizing wearable technology, surpassing copper's limitations in cost, signal quality, size, and environmental impact. Graphene-based inks are positioned to lead in this domain, offering cost-effective solutions directly applicable to materials such as textiles and paper. However, graphene encounters a primary drawback due to its lack of an energy band gap, constraining its potential applications in various electronic devices. In this study, we present a novel formulation of a superconductive, flexible leather graphene antenna utilizing a tri-nanocomposite structure of Graphene Nanoplatelet/Silver/Copper (GNP/Ag/Cu), covering a wideband bandwidth from 5.2 GHz to 8.5 GHz. The electrical conductivity of the GNP/Ag/Cu sample was assessed using the four-point probe method. With each additional layer, conductivity increased from 10.473 × 10<sup>7</sup> S/m to 40.218 × 10<sup>7</sup> S/m, demonstrating a direct correlation between conductivity and antenna gain. The study evaluates the efficacy of various thicknesses of conductive Graphene (GNP/Ag/Cu) ink on drill fabric. Safety assurance is provided through specific absorption rate (SAR) testing, indicating 0.84 W/kg per 10 g of tissue for an input power of 0.5 W, in compliance with ICNIRP standards for wearable device safety. Additionally, a morphological analysis of the antenna was conducted, showcasing its potential for efficient signal transmission in wearable electronic devices.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924001047/pdfft?md5=7955d53c4d26769f95ca474d5e918a3e&pid=1-s2.0-S2468217924001047-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Printed electronics, fueled by graphene's conductivity and flexibility, are revolutionizing wearable technology, surpassing copper's limitations in cost, signal quality, size, and environmental impact. Graphene-based inks are positioned to lead in this domain, offering cost-effective solutions directly applicable to materials such as textiles and paper. However, graphene encounters a primary drawback due to its lack of an energy band gap, constraining its potential applications in various electronic devices. In this study, we present a novel formulation of a superconductive, flexible leather graphene antenna utilizing a tri-nanocomposite structure of Graphene Nanoplatelet/Silver/Copper (GNP/Ag/Cu), covering a wideband bandwidth from 5.2 GHz to 8.5 GHz. The electrical conductivity of the GNP/Ag/Cu sample was assessed using the four-point probe method. With each additional layer, conductivity increased from 10.473 × 107 S/m to 40.218 × 107 S/m, demonstrating a direct correlation between conductivity and antenna gain. The study evaluates the efficacy of various thicknesses of conductive Graphene (GNP/Ag/Cu) ink on drill fabric. Safety assurance is provided through specific absorption rate (SAR) testing, indicating 0.84 W/kg per 10 g of tissue for an input power of 0.5 W, in compliance with ICNIRP standards for wearable device safety. Additionally, a morphological analysis of the antenna was conducted, showcasing its potential for efficient signal transmission in wearable electronic devices.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.