Mohamed E. Moussa, Shimaa El-Hadad, Madiha A. Shoeib, Soha A. Abdel-Gawad
{"title":"Development of Cast AZ63 Magnesium Alloys for Cathodic Protection Applications via Alloying Additives","authors":"Mohamed E. Moussa, Shimaa El-Hadad, Madiha A. Shoeib, Soha A. Abdel-Gawad","doi":"10.1007/s12666-024-03300-4","DOIUrl":null,"url":null,"abstract":"<p>Applying sacrificial anodes to safeguard structures requires better exposure resistance. The effect of adding Ca (<i>x</i> = 0.1, 0.4, 0.7, and 1.0 wt%) and Ti (<i>x</i> = 0.1, 0.2, 0.3, 0.4, and 0.5 wt%) on the microstructure and electrochemical properties of AZ63 magnesium anode alloy has been studied. The corrosion resistance was examined in 3.5 wt% NaCl utilizing electrochemical impedance spectroscopy and potentiodynamic polarization. The microstructure of the base alloy, comprised of primary α-Mg and secondary phase Mg<sub>17</sub>Al<sub>12</sub>, extended to grain boundaries. The corrosion resistance was amended by adding the Ti element, which is correlated to the morphology and dispersion of the TiAl<sub>3</sub> phase at the grain boundary. Adding Ca over 0.1 wt% increased the corrosion rate due to the formation of a highly reactive Mg<sub>2</sub>Ca phase. It implies that AZ63 alloy anodes are viable.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03300-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Applying sacrificial anodes to safeguard structures requires better exposure resistance. The effect of adding Ca (x = 0.1, 0.4, 0.7, and 1.0 wt%) and Ti (x = 0.1, 0.2, 0.3, 0.4, and 0.5 wt%) on the microstructure and electrochemical properties of AZ63 magnesium anode alloy has been studied. The corrosion resistance was examined in 3.5 wt% NaCl utilizing electrochemical impedance spectroscopy and potentiodynamic polarization. The microstructure of the base alloy, comprised of primary α-Mg and secondary phase Mg17Al12, extended to grain boundaries. The corrosion resistance was amended by adding the Ti element, which is correlated to the morphology and dispersion of the TiAl3 phase at the grain boundary. Adding Ca over 0.1 wt% increased the corrosion rate due to the formation of a highly reactive Mg2Ca phase. It implies that AZ63 alloy anodes are viable.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.