Fast Sprite Decomposition from Animated Graphics

Tomoyuki Suzuki, Kotaro Kikuchi, Kota Yamaguchi
{"title":"Fast Sprite Decomposition from Animated Graphics","authors":"Tomoyuki Suzuki, Kotaro Kikuchi, Kota Yamaguchi","doi":"arxiv-2408.03923","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to decomposing animated graphics into\nsprites, a set of basic elements or layers. Our approach builds on the\noptimization of sprite parameters to fit the raster video. For efficiency, we\nassume static textures for sprites to reduce the search space while preventing\nartifacts using a texture prior model. To further speed up the optimization, we\nintroduce the initialization of the sprite parameters utilizing a pre-trained\nvideo object segmentation model and user input of single frame annotations. For\nour study, we construct the Crello Animation dataset from an online design\nservice and define quantitative metrics to measure the quality of the extracted\nsprites. Experiments show that our method significantly outperforms baselines\nfor similar decomposition tasks in terms of the quality/efficiency tradeoff.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach to decomposing animated graphics into sprites, a set of basic elements or layers. Our approach builds on the optimization of sprite parameters to fit the raster video. For efficiency, we assume static textures for sprites to reduce the search space while preventing artifacts using a texture prior model. To further speed up the optimization, we introduce the initialization of the sprite parameters utilizing a pre-trained video object segmentation model and user input of single frame annotations. For our study, we construct the Crello Animation dataset from an online design service and define quantitative metrics to measure the quality of the extracted sprites. Experiments show that our method significantly outperforms baselines for similar decomposition tasks in terms of the quality/efficiency tradeoff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从动画图形中快速分解精灵
本文介绍了一种将动画图形分解为精灵(一组基本元素或图层)的方法。我们的方法建立在优化精灵参数以适应光栅视频的基础上。为了提高效率,我们假定精灵采用静态纹理,以减少搜索空间,同时使用纹理先验模型防止伪影。为了进一步加快优化速度,我们利用预先训练好的视频对象分割模型和用户输入的单帧注释来初始化精灵参数。在研究中,我们从在线设计服务中构建了 Crello 动画数据集,并定义了量化指标来衡量提取精灵的质量。实验表明,在质量/效率权衡方面,我们的方法明显优于类似分解任务的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1