{"title":"Mutual-guided scale-aggregation denoising network for seismic noise attenuation","authors":"","doi":"10.1016/j.cageo.2024.105682","DOIUrl":null,"url":null,"abstract":"<div><p>The background noise contained in seismic records contaminate the effective reflection waves and impact the subsequent processes, such as inversion and migration. The properties of seismic noises, such as non-Gaussianity and non-linearity, will be even more complex in challenging exploration environments. Deep-learning techniques are effective in suppressing complex seismic noises and outperform conventional denoising algorithms. Nonetheless, most deep learning networks are designed to extract the features of input data in single-scale only, which leads to inadequate performance when dealing with complicated seismic data. To enhance the denoising capability for seismic noises of deep learning, a novel mutual-guided scale-aggregation denoising network (MSD-Net) is designed to suppress seismic noises by utilizing the multi-scale features of input data. Specifically, the MSD-Net achieves functions including multi-scale feature extraction, fusion, and guidance through information interaction between different scales. Spatial aggregation attention is used in MSD-Net to enhance relevant features, which improves the separation of effective reflection waves and noises further. Additionally, a model-based training data generation strategy is devised to ensure the efficiency of learning and the denoising capability of MSD-Net. Compared to conventional denoising algorithms and typical deep learning networks, MSD-Net shows powerful result in suppressing complex seismic noises and generalization.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001651","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The background noise contained in seismic records contaminate the effective reflection waves and impact the subsequent processes, such as inversion and migration. The properties of seismic noises, such as non-Gaussianity and non-linearity, will be even more complex in challenging exploration environments. Deep-learning techniques are effective in suppressing complex seismic noises and outperform conventional denoising algorithms. Nonetheless, most deep learning networks are designed to extract the features of input data in single-scale only, which leads to inadequate performance when dealing with complicated seismic data. To enhance the denoising capability for seismic noises of deep learning, a novel mutual-guided scale-aggregation denoising network (MSD-Net) is designed to suppress seismic noises by utilizing the multi-scale features of input data. Specifically, the MSD-Net achieves functions including multi-scale feature extraction, fusion, and guidance through information interaction between different scales. Spatial aggregation attention is used in MSD-Net to enhance relevant features, which improves the separation of effective reflection waves and noises further. Additionally, a model-based training data generation strategy is devised to ensure the efficiency of learning and the denoising capability of MSD-Net. Compared to conventional denoising algorithms and typical deep learning networks, MSD-Net shows powerful result in suppressing complex seismic noises and generalization.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.