{"title":"A simple and fast robust nonlinear model predictive control heuristic using n-steps-ahead uncertainty predictions for back-off calculations","authors":"H.A. Krog, J. Jäschke","doi":"10.1016/j.jprocont.2024.103270","DOIUrl":null,"url":null,"abstract":"<div><p>A new robust nonlinear model predictive control (RNMPC) heuristic is proposed, specifically developed to be i) easy to implement, ii) robust against constraint violations and iii) fast to solve. Our proposed heuristic samples from the disturbance distributions and performs <span><math><mi>n</mi></math></span>-steps-ahead Monte Carlo (MC) simulations to calculate the back-off where <span><math><mi>n</mi></math></span> is a small number, typically one. We show two implementations of our heuristic. The Automatic Back-off Calculation NMPC (ABC-NMPC) uses MC simulations on a process model to calculate the back-off, and <em>explicitly</em> states the back-off in a standard NMPC problem. Our second implementation, the MC Single-Stage NMPC (MCSS-NMPC), directly includes the disturbance distribution in the optimization problem, making it an <em>implicit</em> back-off method. Our methods are robust against constraint violation in the next time-step, under certain assumptions. In the presented case-study, our proposed RNMPC methods outperform the popular multi-stage NMPC in terms of robustness and/or computational cost. We suggest several further modifications to our RNMPC methods to improve performance, at the cost of increased complexity.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103270"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001100","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A new robust nonlinear model predictive control (RNMPC) heuristic is proposed, specifically developed to be i) easy to implement, ii) robust against constraint violations and iii) fast to solve. Our proposed heuristic samples from the disturbance distributions and performs -steps-ahead Monte Carlo (MC) simulations to calculate the back-off where is a small number, typically one. We show two implementations of our heuristic. The Automatic Back-off Calculation NMPC (ABC-NMPC) uses MC simulations on a process model to calculate the back-off, and explicitly states the back-off in a standard NMPC problem. Our second implementation, the MC Single-Stage NMPC (MCSS-NMPC), directly includes the disturbance distribution in the optimization problem, making it an implicit back-off method. Our methods are robust against constraint violation in the next time-step, under certain assumptions. In the presented case-study, our proposed RNMPC methods outperform the popular multi-stage NMPC in terms of robustness and/or computational cost. We suggest several further modifications to our RNMPC methods to improve performance, at the cost of increased complexity.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.