{"title":"Accurate data‐driven surrogates of dynamical systems for forward propagation of uncertainty","authors":"Saibal De, Reese E. Jones, Hemanth Kolla","doi":"10.1002/nme.7576","DOIUrl":null,"url":null,"abstract":"Stochastic collocation (SC) is a well‐known non‐intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full‐field uncertainty propagation that characterizes the distributions of the high‐dimensional solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter‐to‐solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data‐driven sparse identification of nonlinear dynamics framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC‐over‐dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full‐field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nme.7576","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic collocation (SC) is a well‐known non‐intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full‐field uncertainty propagation that characterizes the distributions of the high‐dimensional solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter‐to‐solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data‐driven sparse identification of nonlinear dynamics framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC‐over‐dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full‐field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.