Prediction of turbulent channel flow using Fourier neural operator-based machine-learning strategy

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-08-12 DOI:10.1103/physrevfluids.9.084604
Yunpeng Wang, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, Jianchun Wang
{"title":"Prediction of turbulent channel flow using Fourier neural operator-based machine-learning strategy","authors":"Yunpeng Wang, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, Jianchun Wang","doi":"10.1103/physrevfluids.9.084604","DOIUrl":null,"url":null,"abstract":"Fast and accurate predictions of turbulent flows are of great importance in the science and engineering field. In this paper, we investigate the implicit U-Net enhanced Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers: <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mtext>Re</mtext><mi>τ</mi></msub><mo>≈</mo><mn>180</mn></mrow></math>, 395, and 590. The adopted near-wall mesh grids are tangibly coarser than the general requirements for wall-resolved LES. Compared to the original Fourier neural operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO model has a much better long-term predictive ability. The numerical experiments show that the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and structures, including the mean and fluctuating velocities, the probability density functions (PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO models are computationally much faster than the traditional LES models. Thus, the IUFNO model is a promising approach for the fast prediction of wall-bounded turbulent flow.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"24 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.084604","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Fast and accurate predictions of turbulent flows are of great importance in the science and engineering field. In this paper, we investigate the implicit U-Net enhanced Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers: Reτ180, 395, and 590. The adopted near-wall mesh grids are tangibly coarser than the general requirements for wall-resolved LES. Compared to the original Fourier neural operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO model has a much better long-term predictive ability. The numerical experiments show that the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and structures, including the mean and fluctuating velocities, the probability density functions (PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO models are computationally much faster than the traditional LES models. Thus, the IUFNO model is a promising approach for the fast prediction of wall-bounded turbulent flow.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于傅立叶神经算子的机器学习策略预测湍流通道流动
快速准确地预测湍流在科学和工程领域具有重要意义。在本文中,我们研究了隐式 U-Net 增强傅立叶神经算子(IUFNO)在稳定预测三维(3D)湍流通道流的长时间动力学方面的应用。在三种摩擦雷诺数的粗网格大涡流模拟(LES)中测试了训练有素的 IUFNO 模型:Reτ≈180、395 和 590。所采用的近壁网格比一般的壁面分辨 LES 要求更粗。与原始傅立叶神经算子(FNO)、隐式 FNO(IFNO)和 U-Net 增强 FNO(UFNO)相比,IUFNO 模型的长期预测能力更强。数值实验表明,IUFNO 框架在预测各种流动统计量和结构(包括平均速度和波动速度、速度波动的概率密度函数(PDF)和联合 PDF、雷诺应力谱、动能谱和 Q 准则(涡旋结构))方面优于传统的动态 Smagorinsky 模型和壁面适应性局部涡粘度模型。同时,训练有素的 IUFNO 模型的计算速度比传统的 LES 模型快得多。因此,IUFNO 模型是快速预测壁面湍流的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble Laboratory study of wave turbulence under isotropic forcing Waves beneath a drop levitating over a moving wall Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release Drainage-induced spontaneous film climbing in capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1