Waves beneath a drop levitating over a moving wall

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review Fluids Pub Date : 2024-09-17 DOI:10.1103/physrevfluids.9.093603
Kyle I. McKee, Bauyrzhan K. Primkulov, Kotaro Hashimoto, Yoshiyuki Tagawa, John W. M. Bush
{"title":"Waves beneath a drop levitating over a moving wall","authors":"Kyle I. McKee, Bauyrzhan K. Primkulov, Kotaro Hashimoto, Yoshiyuki Tagawa, John W. M. Bush","doi":"10.1103/physrevfluids.9.093603","DOIUrl":null,"url":null,"abstract":"In recent experiments, [E. Sawaguchi <i>et al.</i>, <span>J. Fluid Mech.</span> <b>862</b>, 261 (2019)] directly probed the lubrication layer of air beneath a droplet levitating inside a rotating cylindrical drum. For small rotation rates of the drum, the lubrication film beneath the drop adopted a steady shape, while at higher rotation rates, traveling waves propagated along the drop's lower surface with roughly half the wall velocity. Here, we rationalize the physical origin of these waves. We begin with a simplified model of the lubrication flow beneath the droplet, and examine the linear stability of this base state to perturbations of the Tollmien-Schlichting type. Our developments lead to the Orr-Sommerfeld equation (OSE), whose eigenvalues give the growth rates and phase speeds of the perturbations. By considering wavelengths long relative to the lubrication film thickness, we solve the OSE perturbatively and so deduce the wavelength and phase velocity of the most unstable mode. We find satisfactory agreement between experiment and theory over the parameter regime considered in the laboratory.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"36 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.093603","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent experiments, [E. Sawaguchi et al., J. Fluid Mech. 862, 261 (2019)] directly probed the lubrication layer of air beneath a droplet levitating inside a rotating cylindrical drum. For small rotation rates of the drum, the lubrication film beneath the drop adopted a steady shape, while at higher rotation rates, traveling waves propagated along the drop's lower surface with roughly half the wall velocity. Here, we rationalize the physical origin of these waves. We begin with a simplified model of the lubrication flow beneath the droplet, and examine the linear stability of this base state to perturbations of the Tollmien-Schlichting type. Our developments lead to the Orr-Sommerfeld equation (OSE), whose eigenvalues give the growth rates and phase speeds of the perturbations. By considering wavelengths long relative to the lubrication film thickness, we solve the OSE perturbatively and so deduce the wavelength and phase velocity of the most unstable mode. We find satisfactory agreement between experiment and theory over the parameter regime considered in the laboratory.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
悬浮在移动墙上的水滴下的波浪
在最近的实验中,[E. Sawaguchi 等人,J. Fluid Mech. 862, 261 (2019)]直接探测了悬浮在旋转圆柱滚筒内的液滴下方的空气润滑层。在圆桶较小的旋转速率下,液滴下方的润滑膜呈稳定形状,而在较高的旋转速率下,行波以大约一半的壁面速度沿液滴下表面传播。在此,我们将合理解释这些波的物理来源。我们从液滴下方润滑流的简化模型入手,研究了这种基态对 Tollmien-Schlichting 类型扰动的线性稳定性。我们的研究得出了 Orr-Sommerfeld 方程 (OSE),其特征值给出了扰动的增长率和相速度。通过考虑相对于润滑膜厚度较长的波长,我们对 OSE 进行了扰动求解,从而推导出了最不稳定模式的波长和相速度。我们发现,在实验室考虑的参数范围内,实验与理论之间的一致性令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Fluids
Physical Review Fluids Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
5.10
自引率
11.10%
发文量
488
期刊介绍: Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.
期刊最新文献
Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble Laboratory study of wave turbulence under isotropic forcing Waves beneath a drop levitating over a moving wall Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release Drainage-induced spontaneous film climbing in capillaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1