首页 > 最新文献

Physical Review Fluids最新文献

英文 中文
Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles 用于直接数值模拟含有不溶性表面活性剂的界面流的流体体积和相场耦合方法及其在上升气泡中的应用
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094004
Palas Kumar Farsoiya, Stéphane Popinet, Howard A. Stone, Luc Deike
Improved numerical methods are needed to understand the effect of surfactants in interfacial fluid mechanics, with various applications including thin films, inkjet printing, and ocean-atmosphere interactions. We provide a three-dimensional coupled volume of fluid (VoF) and phase field numerical approach to simulate the effects of insoluble surfactant-laden flows. The framework is validated against analytical cases for surfactant transport and Marangoni stresses. We then systematically investigate a single surfactant-laden rising bubble. The characteristics of a clean bubble rising in a quiescent liquid are governed by nondimensional numbers, i.e., the Galileo number Ga, which compares inertial and viscous effects, and the Bond number Bo, which compares gravitational and surface tension stresses. The effect of insoluble surfactants introduces an additional independent parameter, the Marangoni number Ma, comparing the change in surface tension forces due to gradients in surfactants concentration with viscous forces. We apply our numerical methods to investigate the influence of surfactants (through the Marangoni number) on rising bubbles in otherwise quiescent fluids. We observe that an increase in the Marangoni number first decreases the rise velocity before reaching a limiting value at high Ma. The value of Ma necessary to observe a significant slowdown increases with Ga. We discuss the associated surfactant accumulation and the vortical dynamics when a steady state is reached. Finally, we perform three-dimensional simulations and demonstrate that Marangoni effects can induce a change in the rise trajectory from spiraling to zigzagging for set values of Bo and Ga, consistent with experimental results.
需要改进数值方法来了解表面活性剂在界面流体力学中的影响,其应用领域包括薄膜、喷墨打印和海洋-大气相互作用。我们提供了一种三维耦合流体体积(VoF)和相场数值方法,用于模拟含有不溶性表面活性剂的流动的影响。根据表面活性剂传输和马兰戈尼应力的分析案例对该框架进行了验证。然后,我们系统地研究了单个含表面活性剂的上升气泡。在静止液体中上升的清洁气泡的特性受非量纲数的制约,即伽利略数 Ga(比较惯性效应和粘性效应)和邦德数 Bo(比较重力应力和表面张力应力)。不溶性表面活性剂的影响引入了一个额外的独立参数,即马兰戈尼数 Ma,用于比较表面活性剂浓度梯度引起的表面张力变化与粘性力。我们运用数值方法研究了表面活性剂(通过马兰戈尼数)对静止流体中上升气泡的影响。我们观察到,马兰戈尼数的增加首先会降低上升速度,然后在高 Ma 值时达到极限值。我们讨论了相关的表面活性剂积累以及达到稳定状态时的涡旋动力学。最后,我们进行了三维模拟,并证明马兰戈尼效应可以诱导上升轨迹从螺旋上升到设定 Bo 和 Ga 值的之字形上升,这与实验结果一致。
{"title":"Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles","authors":"Palas Kumar Farsoiya, Stéphane Popinet, Howard A. Stone, Luc Deike","doi":"10.1103/physrevfluids.9.094004","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094004","url":null,"abstract":"Improved numerical methods are needed to understand the effect of surfactants in interfacial fluid mechanics, with various applications including thin films, inkjet printing, and ocean-atmosphere interactions. We provide a three-dimensional coupled volume of fluid (VoF) and phase field numerical approach to simulate the effects of insoluble surfactant-laden flows. The framework is validated against analytical cases for surfactant transport and Marangoni stresses. We then systematically investigate a single surfactant-laden rising bubble. The characteristics of a clean bubble rising in a quiescent liquid are governed by nondimensional numbers, i.e., the Galileo number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ga</mtext></math>, which compares inertial and viscous effects, and the Bond number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Bo</mtext></math>, which compares gravitational and surface tension stresses. The effect of insoluble surfactants introduces an additional independent parameter, the Marangoni number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math>, comparing the change in surface tension forces due to gradients in surfactants concentration with viscous forces. We apply our numerical methods to investigate the influence of surfactants (through the Marangoni number) on rising bubbles in otherwise quiescent fluids. We observe that an increase in the Marangoni number first decreases the rise velocity before reaching a limiting value at high <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math>. The value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math> necessary to observe a significant slowdown increases with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ga</mtext></math>. We discuss the associated surfactant accumulation and the vortical dynamics when a steady state is reached. Finally, we perform three-dimensional simulations and demonstrate that Marangoni effects can induce a change in the rise trajectory from spiraling to zigzagging for set values of Bo and Ga, consistent with experimental results.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence 均质铁流体湍流中的静态和非静态能量级联
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094604
Sukhdev Mouraya, Nandita Pan, Supratik Banerjee
The nonlinear transfer rate of the total energy (transfer rate of kinetic energy + transfer rate due to the work done by the magnetization) for an incompressible turbulent ferrofluid system is studied under the assumption of statistical homogeneity. Using the formalism of the two-point correlators, an exact relation connecting the second-order statistical moments to the average energy injection rate is derived for the scale-to-scale transfer of the total energy. We validate the universality of the exact relation through direct numerical simulations for stationary and nonstationary cascade regimes. For a weak external magnetic field, both kinetic and the total energy cascade with nearly the same cascade rate. A stationary cascade regime is achieved, and hence a good agreement between the exact energy transfer rate and the average energy injection is found. Due to the rapid alignment of the ferrofluid particles in the presence of strong external fields, the turbulence dynamics becomes nonstationary. Interestingly, there too, both kinetic and the total energy exhibit inertial range cascades but with different cascade rates which can be explained using the nonstationary form of our derived exact relation.
在统计均匀性假设下,研究了不可压缩湍流铁流体系统的非线性总能量传递率(动能传递率+磁化做功导致的传递率)。利用两点相关器的形式主义,得出了总能量尺度间转移的二阶统计矩与平均能量注入率之间的精确关系。我们通过对静态和非静态级联状态的直接数值模拟,验证了精确关系的普遍性。对于弱外部磁场,动能和总能以几乎相同的级联速率级联。由于实现了静态级联机制,精确的能量传输速率与平均能量注入之间达成了良好的一致。由于铁流体粒子在强外场作用下快速排列,湍流动力学变得非稳态。有趣的是,在这种情况下,动能和总能也表现出惯性范围级联,但级联速率不同,这可以用我们推导出的精确关系的非稳态形式来解释。
{"title":"Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence","authors":"Sukhdev Mouraya, Nandita Pan, Supratik Banerjee","doi":"10.1103/physrevfluids.9.094604","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094604","url":null,"abstract":"The nonlinear transfer rate of the total energy (transfer rate of kinetic energy <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>+</mo></math> transfer rate due to the work done by the magnetization) for an incompressible turbulent ferrofluid system is studied under the assumption of statistical homogeneity. Using the formalism of the two-point correlators, an exact relation connecting the second-order statistical moments to the average energy injection rate is derived for the scale-to-scale transfer of the total energy. We validate the universality of the exact relation through direct numerical simulations for stationary and nonstationary cascade regimes. For a weak external magnetic field, both kinetic and the total energy cascade with nearly the same cascade rate. A stationary cascade regime is achieved, and hence a good agreement between the exact energy transfer rate and the average energy injection is found. Due to the rapid alignment of the ferrofluid particles in the presence of strong external fields, the turbulence dynamics becomes nonstationary. Interestingly, there too, both kinetic and the total energy exhibit inertial range cascades but with different cascade rates which can be explained using the nonstationary form of our derived exact relation.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximization of inertial waves focusing in linear and nonlinear regimes 线性和非线性状态下惯性波聚焦的最大化
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094605
A. Mohamed, A. Delache, F. S. Godeferd, J. Liu, M. Oberlack, Y. Wang
We study the propagation of inertial waves (IWs) generated by an axisymmetric torus oscillating at frequency ωf in a rotating fluid. Inertial waves are emitted from the torus and propagate at an angle θf that depends on the ratio of the rotation frequency of the fluid to the forcing frequency of the torus. The waves focus in a neighborhood of the apex of the propagation cone. Using direct numerical simulations, we characterize the flow in this region, within a linear approximation or in the regime where nonlinear interactions between waves produce a turbulent patch. Forcing by the torus is modeled in two ways. The first model represents the effect of the oscillating torus as a local volume force in the form of a Dirac delta function, called the Dirac ring. The second approach aims at a more realistic three-dimensional model of a torus represented by a volume penalization technique. We observe the appearance of a mean flow composed of a central vortex produced by the nonlinear interaction of the IWs. We show that this phenomenon is in agreement with the theory of Davidson et al. [J. Fluid Mech. 557, 135 (2006)] for a rotating fluid. Using Dirac ring forcing in the linear regime, we obtain the dependence on the propagation angle of the vertical kinetic energy at the focal point, which reaches a maximum for θf=35, in agreement with the linear theory developed by Liu et al. [Phys. Fluids 34, 086601 (2022)]. A similar angle is observed in the 3D torus forcing case for both linear and nonlinear simulations: the angle θf=30 maximizes the vertical velocity and dissipation, attesting an optimal energy transfer from the oscillating source to the focal region. In the nonlinear regime, we obtain the detailed spectral distribution of the kinetic energy in the focal zone, and we develop a spatiotemporal analysis of the velocity field that shows a wide presence of IWs in the flow. Moreover, we identify triadic resonances of IWs that lead to the production of the turbulent patch and of a large-scale mode similar to the geostrophic mean flow.
我们研究了在旋转流体中以 ωf 频率振荡的轴对称环所产生的惯性波(IWs)的传播。惯性波从环上发出并以一定角度θf传播,该角度取决于流体旋转频率与环的强迫频率之比。波聚焦在传播锥顶点附近。通过直接的数值模拟,我们描述了这一区域的流动特征,包括线性近似或波浪之间的非线性相互作用产生湍流补丁的情况。环流的作用有两种模式。第一种模型将振荡环的效应表示为狄拉克三角函数形式的局部体积力,称为狄拉克环。第二种方法旨在通过体积惩罚技术建立一个更真实的环状三维模型。我们观察到由 IWs 非线性相互作用产生的中心漩涡组成的平均流的出现。我们发现这一现象与 Davidson 等人[J. Fluid Mech. 557, 135 (2006)]关于旋转流体的理论一致。利用线性机制中的狄拉克环强迫,我们得到了焦点处垂直动能对传播角度的依赖性,在 θf=35∘ 时达到最大值,这与 Liu 等人[Phys. Fluids 34, 086601 (2022)]提出的线性理论一致。在线性和非线性模拟的三维环形强迫情况下,也观察到了类似的角度:角度θf=30∘使垂直速度和耗散最大化,证明了从振荡源到焦点区域的最佳能量转移。在非线性系统中,我们获得了焦点区动能的详细频谱分布,并对速度场进行了时空分析,结果表明流动中广泛存在 IWs。此外,我们还确定了导致产生湍流斑块和类似于地转平均流的大尺度模式的 IWs 三元共振。
{"title":"Maximization of inertial waves focusing in linear and nonlinear regimes","authors":"A. Mohamed, A. Delache, F. S. Godeferd, J. Liu, M. Oberlack, Y. Wang","doi":"10.1103/physrevfluids.9.094605","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094605","url":null,"abstract":"We study the propagation of inertial waves (IWs) generated by an axisymmetric torus oscillating at frequency <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ω</mi><mi>f</mi></msub></math> in a rotating fluid. Inertial waves are emitted from the torus and propagate at an angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>θ</mi><mi>f</mi></msub></math> that depends on the ratio of the rotation frequency of the fluid to the forcing frequency of the torus. The waves focus in a neighborhood of the apex of the propagation cone. Using direct numerical simulations, we characterize the flow in this region, within a linear approximation or in the regime where nonlinear interactions between waves produce a turbulent patch. Forcing by the torus is modeled in two ways. The first model represents the effect of the oscillating torus as a local volume force in the form of a Dirac delta function, called the Dirac ring. The second approach aims at a more realistic three-dimensional model of a torus represented by a volume penalization technique. We observe the appearance of a mean flow composed of a central vortex produced by the nonlinear interaction of the IWs. We show that this phenomenon is in agreement with the theory of Davidson <i>et al.</i> [<span>J. Fluid Mech.</span> <b>557</b>, 135 (2006)] for a rotating fluid. Using Dirac ring forcing in the linear regime, we obtain the dependence on the propagation angle of the vertical kinetic energy at the focal point, which reaches a maximum for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><msup><mn>35</mn><mo>∘</mo></msup></mrow></math>, in agreement with the linear theory developed by Liu <i>et al.</i> [<span>Phys. Fluids</span> <b>34</b>, 086601 (2022)]. A similar angle is observed in the 3D torus forcing case for both linear and nonlinear simulations: the angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><msup><mn>30</mn><mo>∘</mo></msup></mrow></math> maximizes the vertical velocity and dissipation, attesting an optimal energy transfer from the oscillating source to the focal region. In the nonlinear regime, we obtain the detailed spectral distribution of the kinetic energy in the focal zone, and we develop a spatiotemporal analysis of the velocity field that shows a wide presence of IWs in the flow. Moreover, we identify triadic resonances of IWs that lead to the production of the turbulent patch and of a large-scale mode similar to the geostrophic mean flow.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spreading and engulfment of a viscoelastic film onto a Newtonian droplet 粘弹性薄膜在牛顿液滴上的扩展和吞噬
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1103/physrevfluids.9.094003
Chunheng Zhao, Taehun Lee, Andreas Carlson
We use the conservative phase-field lattice Boltzmann method to investigate the dynamics when a Newtonian droplet comes in contact with an immiscible viscoelastic liquid film. The dynamics of the three liquid phases are explored through numerical simulations, with a focus on illustrating the contact line dynamics and the viscoelastic effects described by the Oldroyd-B model. The droplet dynamics are contrasted with the case of a Newtonian fluid film. The simulations demonstrate that when the film is viscoelastic, the droplet dynamics become insensitive to the film thickness when the polymer viscosity and relaxation time are large. A viscoelastic ridge forms at the moving contact line, which evolves with a power-law dependence on time. By rescaling the interface profile of the ridge using its height and width, it appears to collapse onto a similar shape. Our findings reveal a strong correlation between the viscoelastic stress and the interface shape near the contact line.
我们采用保守相场晶格玻尔兹曼法研究了牛顿液滴与不相溶粘弹性液膜接触时的动力学。我们通过数值模拟探索了三相液体的动力学,重点说明了接触线动力学和 Oldroyd-B 模型所描述的粘弹性效应。液滴动力学与牛顿流体薄膜的情况进行了对比。模拟结果表明,当薄膜具有粘弹性时,当聚合物粘度和弛豫时间较大时,液滴动力学对薄膜厚度不敏感。在移动的接触线上会形成粘弹性脊,它的变化与时间呈幂律关系。通过使用脊的高度和宽度重新标定脊的界面轮廓,它似乎会塌缩成类似的形状。我们的研究结果表明,粘弹性应力与接触线附近的界面形状之间存在很强的相关性。
{"title":"Spreading and engulfment of a viscoelastic film onto a Newtonian droplet","authors":"Chunheng Zhao, Taehun Lee, Andreas Carlson","doi":"10.1103/physrevfluids.9.094003","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094003","url":null,"abstract":"We use the conservative phase-field lattice Boltzmann method to investigate the dynamics when a Newtonian droplet comes in contact with an immiscible viscoelastic liquid film. The dynamics of the three liquid phases are explored through numerical simulations, with a focus on illustrating the contact line dynamics and the viscoelastic effects described by the Oldroyd-B model. The droplet dynamics are contrasted with the case of a Newtonian fluid film. The simulations demonstrate that when the film is viscoelastic, the droplet dynamics become insensitive to the film thickness when the polymer viscosity and relaxation time are large. A viscoelastic ridge forms at the moving contact line, which evolves with a power-law dependence on time. By rescaling the interface profile of the ridge using its height and width, it appears to collapse onto a similar shape. Our findings reveal a strong correlation between the viscoelastic stress and the interface shape near the contact line.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulational instability of nonuniformly damped, broad-banded waves: Applications to waves in sea ice 非均匀阻尼宽带波的调制不稳定性:海冰中波浪的应用
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1103/physrevfluids.9.094802
Raphael Stuhlmeier, Conor Heffernan, Alberto Alberello, Emilian Părău
This paper sets out to explore the modulational (or Benjamin-Feir) instability of a monochromatic wave propagating in the presence of damping such as that induced by sea ice on the ocean surface. The fundamental wave motion is modelled using the spatial Zakharov equation, to which either uniform or nonuniform (frequency-dependent) damping is added. By means of mode truncation the spatial analog of the classical Benjamin-Feir instability can be studied analytically using dynamical systems techniques. The formulation readily yields the free surface and its envelope, giving insight into the physical implications of damping on the modulational instability. The evolution of an initially unstable mode is also studied numerically by integrating the damped, spatial Zakharov equation, in order to complement the analytical theory. This sheds light on the effects of damping on spectral broadening arising from this instability.
本文旨在探讨单色波在存在阻尼(如海冰在海面上引起的阻尼)的情况下传播的调制(或本杰明-费尔)不稳定性。基波运动采用空间扎哈罗夫方程建模,并加入均匀或不均匀(随频率变化)阻尼。通过模态截断,可以利用动力系统技术对经典的本杰明-费尔不稳定性的空间模拟进行分析研究。这种方法很容易得到自由表面及其包络,从而深入了解阻尼对调制不稳定性的物理影响。为了补充分析理论,还通过积分阻尼空间扎哈罗夫方程对初始不稳定模式的演变进行了数值研究。这揭示了阻尼对这种不稳定性引起的频谱展宽的影响。
{"title":"Modulational instability of nonuniformly damped, broad-banded waves: Applications to waves in sea ice","authors":"Raphael Stuhlmeier, Conor Heffernan, Alberto Alberello, Emilian Părău","doi":"10.1103/physrevfluids.9.094802","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094802","url":null,"abstract":"This paper sets out to explore the modulational (or Benjamin-Feir) instability of a monochromatic wave propagating in the presence of damping such as that induced by sea ice on the ocean surface. The fundamental wave motion is modelled using the spatial Zakharov equation, to which either uniform or nonuniform (frequency-dependent) damping is added. By means of mode truncation the spatial analog of the classical Benjamin-Feir instability can be studied analytically using dynamical systems techniques. The formulation readily yields the free surface and its envelope, giving insight into the physical implications of damping on the modulational instability. The evolution of an initially unstable mode is also studied numerically by integrating the damped, spatial Zakharov equation, in order to complement the analytical theory. This sheds light on the effects of damping on spectral broadening arising from this instability.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep reinforcement learning of airfoil pitch control in a highly disturbed environment using partial observations 利用部分观测数据在高干扰环境中对机翼俯仰控制进行深度强化学习
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1103/physrevfluids.9.093902
Diederik Beckers, Jeff D. Eldredge
This study explores the application of deep reinforcement learning (RL) to design an airfoil pitch controller capable of minimizing lift variations in randomly disturbed flows. The controller, treated as an agent in a partially observable Markov decision process, receives non-Markovian observations from the environment, simulating practical constraints where flow information is limited to force and pressure sensors. Deep RL, particularly the TD3 algorithm, is used to approximate an optimal control policy under such conditions. Testing is conducted for a flat plate airfoil in two environments: a classical unsteady environment with vertical acceleration disturbances (i.e., a Wagner setup) and a viscous flow model with pulsed point force disturbances. In both cases, augmenting observations of the lift, pitch angle, and angular velocity with extra wake information (e.g., from pressure sensors) and retaining memory of past observations enhances RL control performance. Results demonstrate the capability of RL control to match or exceed standard linear controllers in minimizing lift variations. Special attention is given to the choice of training data and the generalization to unseen disturbances.
本研究探索了深度强化学习(RL)在机翼俯仰控制器设计中的应用,该控制器能够最大限度地减少随机扰动气流中的升力变化。控制器被视为部分可观测马尔可夫决策过程中的一个代理,接收来自环境的非马尔可夫观测数据,模拟实际限制条件,即流动信息仅限于力和压力传感器。深度 RL,特别是 TD3 算法,被用来近似这种条件下的最优控制策略。在两种环境下对平板翼面进行了测试:一种是具有垂直加速度干扰的经典非稳态环境(即瓦格纳设置),另一种是具有脉冲点力干扰的粘性流模型。在这两种情况下,利用额外的尾流信息(如来自压力传感器的信息)增强对升力、俯仰角和角速度的观测,并保留对过去观测的记忆,都能提高 RL 控制性能。结果表明,在最大限度地减少升力变化方面,RL 控制能够与标准线性控制器相媲美,甚至更胜一筹。对训练数据的选择和对未知干扰的泛化给予了特别关注。
{"title":"Deep reinforcement learning of airfoil pitch control in a highly disturbed environment using partial observations","authors":"Diederik Beckers, Jeff D. Eldredge","doi":"10.1103/physrevfluids.9.093902","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.093902","url":null,"abstract":"This study explores the application of deep reinforcement learning (RL) to design an airfoil pitch controller capable of minimizing lift variations in randomly disturbed flows. The controller, treated as an agent in a partially observable Markov decision process, receives non-Markovian observations from the environment, simulating practical constraints where flow information is limited to force and pressure sensors. Deep RL, particularly the TD3 algorithm, is used to approximate an optimal control policy under such conditions. Testing is conducted for a flat plate airfoil in two environments: a classical unsteady environment with vertical acceleration disturbances (i.e., a Wagner setup) and a viscous flow model with pulsed point force disturbances. In both cases, augmenting observations of the lift, pitch angle, and angular velocity with extra wake information (e.g., from pressure sensors) and retaining memory of past observations enhances RL control performance. Results demonstrate the capability of RL control to match or exceed standard linear controllers in minimizing lift variations. Special attention is given to the choice of training data and the generalization to unseen disturbances.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble entrapment by drop impact: Combined effect of surface tension and viscosity 水滴撞击产生的气泡:表面张力和粘度的综合效应
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1103/physrevfluids.9.094002
Vincent Gourmandie, Juliette Pierre, Valentin Leroy, Caroline Derec
In this study, we systematically investigate the effect of surface tension on bubble entrapment after drop impact in the pinching regime. Experiments are conducted using three different systems: pure water, aqueous solutions with ethanol, or with surfactant molecules, both at various concentrations. Results are compiled for a large set of values of the surface tension γ and the drop impact velocity U. Across all solutions, the cavity development dynamics exhibit similarity and are effectively characterized by dimensionless gravito-capillary parameters. Whatever the surface tension, our measurements indicate that only 40% of the impact energy is converted into potential energy of the cavity. However, a notable distinction arises when considering bubble entrapment. We have constructed a bubbling diagram in the (U,γ) plane, and observed that the conditions for bubble entrapment are altered with changing surface tension in water-ethanol mixtures. More intriguingly, these conditions are modified in a distinctly different manner for surfactant solutions. To interpret our experimental findings, we compile a comprehensive set of experimental and numerical results from the literature. We demonstrate the possibility of unifying results across all systems and our water-ethanol mixtures through an empirical law including the influence of surface tension and viscosity. Although no physical justification exists at this stage, this empirical law suggests the significant role of capillary waves traveling along the cavity interface in bubble entrapment. Within this context, the behavior of surfactant-laden solutions aligns with other homogeneous solutions by considering the elastic properties conferred upon the interfaces by surfactant molecules.
在本研究中,我们系统地研究了表面张力对捏合状态下液滴撞击后气泡夹带的影响。实验使用了三种不同的系统:纯水、含乙醇的水溶液或含表面活性剂分子的水溶液,两种溶液的浓度各不相同。在所有溶液中,空腔的发展动态都表现出相似性,并有效地用无量纲重力-毛细管参数来表征。无论表面张力如何,我们的测量结果表明,只有 40% 的冲击能转化为空腔势能。然而,在考虑气泡夹带时,出现了一个显著的区别。我们绘制了(U,γ)平面上的气泡图,并观察到在水-乙醇混合物中,气泡夹带的条件随着表面张力的变化而改变。更有趣的是,这些条件在表面活性剂溶液中的变化方式截然不同。为了解释我们的实验发现,我们汇编了文献中的一整套实验和数值结果。我们证明了通过包括表面张力和粘度影响在内的经验法则统一所有体系和水乙醇混合物结果的可能性。尽管现阶段还不存在物理上的合理解释,但这一经验法则表明,毛细管波沿着空腔界面传播在气泡夹持中起着重要作用。在此背景下,考虑到表面活性剂分子赋予界面的弹性特性,含表面活性剂溶液的行为与其他均相溶液一致。
{"title":"Bubble entrapment by drop impact: Combined effect of surface tension and viscosity","authors":"Vincent Gourmandie, Juliette Pierre, Valentin Leroy, Caroline Derec","doi":"10.1103/physrevfluids.9.094002","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094002","url":null,"abstract":"In this study, we systematically investigate the effect of surface tension on bubble entrapment after drop impact in the pinching regime. Experiments are conducted using three different systems: pure water, aqueous solutions with ethanol, or with surfactant molecules, both at various concentrations. Results are compiled for a large set of values of the surface tension <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> and the drop impact velocity <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi></math>. Across all solutions, the cavity development dynamics exhibit similarity and are effectively characterized by dimensionless gravito-capillary parameters. Whatever the surface tension, our measurements indicate that only <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>40</mn><mo>%</mo></mrow></math> of the impact energy is converted into potential energy of the cavity. However, a notable distinction arises when considering bubble entrapment. We have constructed a <i>bubbling diagram</i> in the (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo>,</mo><mi>γ</mi></math>) plane, and observed that the conditions for bubble entrapment are altered with changing surface tension in water-ethanol mixtures. More intriguingly, these conditions are modified in a distinctly different manner for surfactant solutions. To interpret our experimental findings, we compile a comprehensive set of experimental and numerical results from the literature. We demonstrate the possibility of unifying results across all systems and our water-ethanol mixtures through an empirical law including the influence of surface tension and viscosity. Although no physical justification exists at this stage, this empirical law suggests the significant role of capillary waves traveling along the cavity interface in bubble entrapment. Within this context, the behavior of surfactant-laden solutions aligns with other homogeneous solutions by considering the elastic properties conferred upon the interfaces by surfactant molecules.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-induced cavitation in liquid He4 near the liquid-vapor critical point 液态 He4 在液气临界点附近的激光诱导空化
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-09 DOI: 10.1103/physrevfluids.9.l091601
Kenneth R. Langley, Tariq Alghamdi, Andres A. Aguirre-Pablo, Nathan B. Speirs, S. T. Thoroddsen, Peter Taborek
High-speed videos in an optical cryostat, with frame rates up to 5×106 fps, are used to study the dynamics of laser-induced cavitation in helium near the critical point and in the supercritical region. The propagation of strong shock waves are observed in both regimes. The time dependence of the cavitation bubble radius as well as the acoustic pressure field outside the bubble are described by standard compressible flow models. In the temperature range 4K<T<5.2K, a symmetric cloud of micron-scale bubbles are observed outside the main cavitation bubble as it approaches its maximum radius which is due to homogeneous nucleation and spinodal decomposition in the low-pressure fluid outside the bubble. Nucleation of secondary bubbles is also observed far below the critical point, but this requires large negative pressures that can be generated by shock waves that reflect from the primary bubble.
在光学低温恒温器中使用帧速率高达 5×106 fps 的高速视频,研究临界点附近和超临界区域氦气中激光诱导空化的动力学。在这两种情况下都观察到了强冲击波的传播。空化气泡半径和气泡外声压场的时间依赖性由标准可压缩流动模型描述。在 4K<T<5.2K 的温度范围内,当主空化气泡接近其最大半径时,在气泡外观察到对称的微米级气泡云,这是由于气泡外低压流体中的均匀成核和旋光分解造成的。在远低于临界点的地方也能观察到次级气泡的成核现象,但这需要较大的负压,而主气泡反射的冲击波可以产生这种负压。
{"title":"Laser-induced cavitation in liquid He4 near the liquid-vapor critical point","authors":"Kenneth R. Langley, Tariq Alghamdi, Andres A. Aguirre-Pablo, Nathan B. Speirs, S. T. Thoroddsen, Peter Taborek","doi":"10.1103/physrevfluids.9.l091601","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.l091601","url":null,"abstract":"High-speed videos in an optical cryostat, with frame rates up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>5</mn><mo>×</mo><msup><mn>10</mn><mn>6</mn></msup></mrow></math> fps, are used to study the dynamics of laser-induced cavitation in helium near the critical point and in the supercritical region. The propagation of strong shock waves are observed in both regimes. The time dependence of the cavitation bubble radius as well as the acoustic pressure field outside the bubble are described by standard compressible flow models. In the temperature range <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><mi>K</mi><mo>&lt;</mo><mi>T</mi><mo>&lt;</mo><mn>5.2</mn><mi>K</mi></mrow></math>, a symmetric cloud of micron-scale bubbles are observed outside the main cavitation bubble as it approaches its maximum radius which is due to homogeneous nucleation and spinodal decomposition in the low-pressure fluid outside the bubble. Nucleation of secondary bubbles is also observed far below the critical point, but this requires large negative pressures that can be generated by shock waves that reflect from the primary bubble.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of gravity-driven viscous films flowing down a soft cylinder 重力驱动的粘性薄膜在软圆筒中流动的稳定性
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-09 DOI: 10.1103/physrevfluids.9.094001
Youchuang Chao, Lailai Zhu, Zijing Ding, Tiantian Kong, Juntao Chang, Ziao Wang
We study the stability of gravity-driven viscous liquid films flowing down a vertical cylinder that is uniformly coated with a thin layer of elastic solids. Combining the gravity-driven viscous flows with the elastic deformation of the coated soft layer, we formulate a long-wave model to describe the evolution of a film flow-soft structure coupled system. Based on the model, we systematically examine the impact of the coating properties, including the elasticity and thickness on the temporal and spatiotemporal stability. Temporal stability analysis shows that the soft layer plays a dual role, namely, the elasticity acts as a destabilizing factor, leading to large deformations of both film interface and soft surface. However, due to the geometrical effect, increasing the layer thickness stabilizes the Rayleigh-Plateau instability. By contrast, the linear phase speed is always enhanced with increasing the elasticity or the thickness of the coated layer. We then analyze the spatiotemporal nature of free-surface instabilities and find that the elasticity can trigger the film flows from being absolutely unstable to convectively unstable. Transient numerical solutions of the full asymptotic model further verify the predictions from linear stability analysis, and more importantly, reveal the nonlinear effect of the softness. Compared to liquid films falling down the cylinder with rigid walls, the soft surface can enhance the coalescence of faster, larger sliding droplets with preceding slower, smaller sliding ones, thus resulting in a more unstable system. Our study highlights the potential of coating a thin layer of soft materials onto the walls of substrate to regulate the dynamics of liquid film systems, and may have implications for the emerging bioinspired applications; for instance, the large-scale collection and transport of water on flexible microfiber arrays.
我们研究了重力驱动的粘性液膜沿垂直圆柱体流下的稳定性,该圆柱体上均匀地涂覆了一层弹性固体薄层。结合重力驱动的粘性流动和涂层软层的弹性变形,我们建立了一个长波模型来描述薄膜流动-软结构耦合系统的演变。基于该模型,我们系统地研究了涂层特性(包括弹性和厚度)对时空稳定性的影响。时空稳定性分析表明,软层起着双重作用,即弹性是一个失稳因素,会导致薄膜界面和软表面产生较大变形。然而,由于几何效应,增加软层厚度会使瑞利-高原不稳定性趋于稳定。相比之下,线性相位速度总是随着弹性或涂层厚度的增加而提高。然后,我们分析了自由表面不稳定性的时空性质,发现弹性会引发薄膜流从绝对不稳定到对流不稳定。全渐近模型的瞬态数值解进一步验证了线性稳定性分析的预测,更重要的是揭示了软性的非线性效应。与液膜从具有刚性壁的圆柱体上落下相比,软表面能增强速度较快、较大的滑动液滴与前面速度较慢、较小的滑动液滴的凝聚,从而导致系统更不稳定。我们的研究强调了在基底壁上涂一层薄薄的软材料来调节液膜系统动力学的潜力,并可能对新兴的生物启发应用产生影响;例如,在柔性微纤维阵列上大规模收集和运输水。
{"title":"Stability of gravity-driven viscous films flowing down a soft cylinder","authors":"Youchuang Chao, Lailai Zhu, Zijing Ding, Tiantian Kong, Juntao Chang, Ziao Wang","doi":"10.1103/physrevfluids.9.094001","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094001","url":null,"abstract":"We study the stability of gravity-driven viscous liquid films flowing down a vertical cylinder that is uniformly coated with a thin layer of elastic solids. Combining the gravity-driven viscous flows with the elastic deformation of the coated soft layer, we formulate a long-wave model to describe the evolution of a film flow-soft structure coupled system. Based on the model, we systematically examine the impact of the coating properties, including the elasticity and thickness on the temporal and spatiotemporal stability. Temporal stability analysis shows that the soft layer plays a dual role, namely, the elasticity acts as a destabilizing factor, leading to large deformations of both film interface and soft surface. However, due to the geometrical effect, increasing the layer thickness stabilizes the Rayleigh-Plateau instability. By contrast, the linear phase speed is always enhanced with increasing the elasticity or the thickness of the coated layer. We then analyze the spatiotemporal nature of free-surface instabilities and find that the elasticity can trigger the film flows from being absolutely unstable to convectively unstable. Transient numerical solutions of the full asymptotic model further verify the predictions from linear stability analysis, and more importantly, reveal the nonlinear effect of the softness. Compared to liquid films falling down the cylinder with rigid walls, the soft surface can enhance the coalescence of faster, larger sliding droplets with preceding slower, smaller sliding ones, thus resulting in a more unstable system. Our study highlights the potential of coating a thin layer of soft materials onto the walls of substrate to regulate the dynamics of liquid film systems, and may have implications for the emerging bioinspired applications; for instance, the large-scale collection and transport of water on flexible microfiber arrays.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-plane segregation and diffusion in dense, bidisperse granular shear flow 致密双分散粒状剪切流中的反面离析和扩散
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-05 DOI: 10.1103/physrevfluids.9.094301
Harkirat Singh, David L. Henann
Many dense granular systems are non-monodisperse, consisting of particles of different sizes, and will segregate based on size during flow. This phenomenon is an important aspect of many industrial and geophysical processes, necessitating predictive continuum models. This paper systematically studies a key aspect of the three-dimensional nature of segregation and diffusion in flowing, dense, bidisperse granular mixtures—namely, segregation and diffusion acting along the direction perpendicular to the plane of shearing, which we refer to as the anti-plane modes of segregation and diffusion. To this end, we consider discrete-element method (DEM) simulations of flows of dense, bidisperse mixtures of frictional spheres in an idealized configuration that isolates anti-plane segregation and diffusion. We find that previously developed constitutive equations, calibrated to DEM simulation results from flows in which both the segregation and diffusion processes occur within the plane of shearing, do not capture aspects of the anti-plane segregation dynamics. Accordingly, we utilize DEM simulation results to inform and calibrate constitutive equations for the segregation and diffusion fluxes in their anti-plane modes. Predictions of the resulting continuum model for the anti-plane segregation dynamics are tested against additional DEM simulation results across different cases, while parameters such as the shear strain rate and mixture composition are varied, and we find that the calibrated model predictions match well with the DEM simulation results. Finally, we suggest a strategy for generalizing the constitutive forms for the segregation and diffusion fluxes to obtain three-dimensional constitutive equations that account for both the in-plane and the anti-plane modes of the segregation and diffusion processes.
许多致密颗粒系统都是非单分散的,由不同大小的颗粒组成,在流动过程中会根据大小发生分离。这种现象是许多工业和地球物理过程的一个重要方面,需要建立预测性连续模型。本文系统地研究了流动、致密、双分散粒状混合物中偏析和扩散三维性质的一个关键方面,即沿垂直于剪切平面方向的偏析和扩散作用,我们将其称为偏析和扩散的反平面模式。为此,我们采用离散元素法(DEM)模拟了摩擦球双向分散的致密混合物在理想化配置下的流动,该配置隔离了反平面偏析和扩散。我们发现,根据 DEM 模拟结果校准的先前开发的构成方程无法捕捉到反平面偏析动力学的各个方面,而偏析和扩散过程均发生在剪切平面内。因此,我们利用 DEM 模拟结果,为反面模式的偏析和扩散通量提供信息,并校准其构成方程。在改变剪切应变率和混合物成分等参数的同时,我们还根据不同情况下的其他 DEM 模拟结果,测试了由此产生的反面偏析动力学连续模型的预测结果,结果发现校准后的模型预测结果与 DEM 模拟结果非常吻合。最后,我们提出了一种对偏析和扩散通量的构成形式进行概括的策略,以获得同时考虑偏析和扩散过程的平面内和反面模式的三维构成方程。
{"title":"Anti-plane segregation and diffusion in dense, bidisperse granular shear flow","authors":"Harkirat Singh, David L. Henann","doi":"10.1103/physrevfluids.9.094301","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094301","url":null,"abstract":"Many dense granular systems are non-monodisperse, consisting of particles of different sizes, and will segregate based on size during flow. This phenomenon is an important aspect of many industrial and geophysical processes, necessitating predictive continuum models. This paper systematically studies a key aspect of the three-dimensional nature of segregation and diffusion in flowing, dense, bidisperse granular mixtures—namely, segregation and diffusion acting along the direction perpendicular to the plane of shearing, which we refer to as the anti-plane modes of segregation and diffusion. To this end, we consider discrete-element method (DEM) simulations of flows of dense, bidisperse mixtures of frictional spheres in an idealized configuration that isolates anti-plane segregation and diffusion. We find that previously developed constitutive equations, calibrated to DEM simulation results from flows in which both the segregation and diffusion processes occur within the plane of shearing, do not capture aspects of the anti-plane segregation dynamics. Accordingly, we utilize DEM simulation results to inform and calibrate constitutive equations for the segregation and diffusion fluxes in their anti-plane modes. Predictions of the resulting continuum model for the anti-plane segregation dynamics are tested against additional DEM simulation results across different cases, while parameters such as the shear strain rate and mixture composition are varied, and we find that the calibrated model predictions match well with the DEM simulation results. Finally, we suggest a strategy for generalizing the constitutive forms for the segregation and diffusion fluxes to obtain three-dimensional constitutive equations that account for both the in-plane and the anti-plane modes of the segregation and diffusion processes.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1