首页 > 最新文献

Physical Review Fluids最新文献

英文 中文
Laboratory study of wave turbulence under isotropic forcing 各向同性作用下的波湍流实验室研究
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-19 DOI: 10.1103/physrevfluids.9.094803
Z. Taebel, M. L. McAllister, A. Scotti, M. Onorato, T. S. van den Bremer
The statistical treatment of random weakly nonlinear interactions between waves, called wave turbulence (WT), is fundamental to understanding the development of the ocean surface. For gravity waves, wave turbulence predicts a dual (direct and inverse) cascade of energy and wave action, which yield power-law solutions for the energy spectrum. While energy cascades were predicted more than 50 years ago, observing them in the laboratory with mechanical forcing remains a challenge. Here, we present experiments in which we attempted to reproduce both direct and inverse cascades in a large circular wave tank. The geometry of the wave tank allows for the creation of isotropically spread surface waves, which is an assumption that underlies WT theory. Although we did see evidence of a direct cascade of energy, we did not observe an inverse cascade of wave action. We discuss the competing effects of dissipation and intermittency, which may dominate or obscure the weakly nonlinear dynamics.
波浪之间的随机弱非线性相互作用的统计处理,称为波湍流(WT),是理解海洋表面发展的基础。对于重力波,波湍流预示着能量和波浪作用的双重(直接和逆向)级联,从而产生能量谱的幂律解。虽然能量级联早在 50 多年前就被预测到,但在实验室中用机械强迫观测它们仍然是一个挑战。在本文中,我们尝试在一个大型圆形波浪槽中重现直接级联和反向级联。波箱的几何形状允许产生各向同性扩散的表面波,这是 WT 理论的一个假设。虽然我们确实看到了能量直接级联的证据,但没有观察到波浪作用的反向级联。我们讨论了耗散和间歇的竞争效应,它们可能主导或掩盖弱非线性动力学。
{"title":"Laboratory study of wave turbulence under isotropic forcing","authors":"Z. Taebel, M. L. McAllister, A. Scotti, M. Onorato, T. S. van den Bremer","doi":"10.1103/physrevfluids.9.094803","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094803","url":null,"abstract":"The statistical treatment of random weakly nonlinear interactions between waves, called wave turbulence (WT), is fundamental to understanding the development of the ocean surface. For gravity waves, wave turbulence predicts a dual (direct and inverse) cascade of energy and wave action, which yield power-law solutions for the energy spectrum. While energy cascades were predicted more than 50 years ago, observing them in the laboratory with mechanical forcing remains a challenge. Here, we present experiments in which we attempted to reproduce both direct and inverse cascades in a large circular wave tank. The geometry of the wave tank allows for the creation of isotropically spread surface waves, which is an assumption that underlies WT theory. Although we did see evidence of a direct cascade of energy, we did not observe an inverse cascade of wave action. We discuss the competing effects of dissipation and intermittency, which may dominate or obscure the weakly nonlinear dynamics.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"26 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble 在火花引发的气泡喷射作用下,弹性膜变形所产生的气蚀现象
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-19 DOI: 10.1103/physrevfluids.9.093604
Yuxue Zhong, Jingzhu Wang, Jianlin Huang, Yiwei Wang
The collapse of a spark-induced bubble results in a high-speed jet, and when that jet impacts an elastic membrane, the latter deforms considerably and is accompanied by secondary cavitation. The cavitation bubble then moves away from the membrane with subsequent oscillation. To study the mechanism for this cavitation, experiments involving diffuse light and particle image velocimetry were conducted to capture the behaviors of the cavitation bubble and flow field resulting from the rapid deformation of the membrane. Analyzing the velocity and pressure fields reveals secondary cavitation induced by a sudden acceleration rather than a large velocity. Secondary cavitation occurs when the dimensionless inertial force overcomes the dimensionless pressure difference required for cavitation; subjecting these dimensionless quantities to a parametric study shows that the secondary cavitation occurs when the former is greater than the latter. During the collapse of the cavitation bubble, a thin jet points toward the membrane with an impact velocity of approximately 35 m/s. The subsequent oscillation of the cavitation bubble results in vortex flow moving away from the membrane. These findings provide insights into engineering applications such as bioengineering and mixing.
火花引发的气泡坍塌会产生高速射流,当射流撞击弹性膜时,后者会发生显著变形,并伴随二次空化。空化气泡随后会随着振荡远离薄膜。为了研究这种空化的机理,我们进行了漫射光和粒子图像测速仪实验,以捕捉空化泡的行为和膜快速变形产生的流场。对速度场和压力场的分析表明,二次空化是由突然加速而不是大速度引起的。当无量纲惯性力超过空化所需的无量纲压力差时,就会发生二次空化;对这些无量纲量进行参数化研究表明,当前者大于后者时,就会发生二次空化。在空化气泡坍塌过程中,细射流以大约 35 米/秒的冲击速度指向薄膜。空化泡随后的振荡导致涡流远离膜。这些发现为生物工程和混合等工程应用提供了启示。
{"title":"Cavitation caused by an elastic membrane deforming under the jetting of a spark-induced bubble","authors":"Yuxue Zhong, Jingzhu Wang, Jianlin Huang, Yiwei Wang","doi":"10.1103/physrevfluids.9.093604","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.093604","url":null,"abstract":"The collapse of a spark-induced bubble results in a high-speed jet, and when that jet impacts an elastic membrane, the latter deforms considerably and is accompanied by secondary cavitation. The cavitation bubble then moves away from the membrane with subsequent oscillation. To study the mechanism for this cavitation, experiments involving diffuse light and particle image velocimetry were conducted to capture the behaviors of the cavitation bubble and flow field resulting from the rapid deformation of the membrane. Analyzing the velocity and pressure fields reveals secondary cavitation induced by a sudden acceleration rather than a large velocity. Secondary cavitation occurs when the dimensionless inertial force overcomes the dimensionless pressure difference required for cavitation; subjecting these dimensionless quantities to a parametric study shows that the secondary cavitation occurs when the former is greater than the latter. During the collapse of the cavitation bubble, a thin jet points toward the membrane with an impact velocity of approximately 35 m/s. The subsequent oscillation of the cavitation bubble results in vortex flow moving away from the membrane. These findings provide insights into engineering applications such as bioengineering and mixing.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"5 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waves beneath a drop levitating over a moving wall 悬浮在移动墙上的水滴下的波浪
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-17 DOI: 10.1103/physrevfluids.9.093603
Kyle I. McKee, Bauyrzhan K. Primkulov, Kotaro Hashimoto, Yoshiyuki Tagawa, John W. M. Bush
In recent experiments, [E. Sawaguchi et al., J. Fluid Mech. 862, 261 (2019)] directly probed the lubrication layer of air beneath a droplet levitating inside a rotating cylindrical drum. For small rotation rates of the drum, the lubrication film beneath the drop adopted a steady shape, while at higher rotation rates, traveling waves propagated along the drop's lower surface with roughly half the wall velocity. Here, we rationalize the physical origin of these waves. We begin with a simplified model of the lubrication flow beneath the droplet, and examine the linear stability of this base state to perturbations of the Tollmien-Schlichting type. Our developments lead to the Orr-Sommerfeld equation (OSE), whose eigenvalues give the growth rates and phase speeds of the perturbations. By considering wavelengths long relative to the lubrication film thickness, we solve the OSE perturbatively and so deduce the wavelength and phase velocity of the most unstable mode. We find satisfactory agreement between experiment and theory over the parameter regime considered in the laboratory.
在最近的实验中,[E. Sawaguchi 等人,J. Fluid Mech. 862, 261 (2019)]直接探测了悬浮在旋转圆柱滚筒内的液滴下方的空气润滑层。在圆桶较小的旋转速率下,液滴下方的润滑膜呈稳定形状,而在较高的旋转速率下,行波以大约一半的壁面速度沿液滴下表面传播。在此,我们将合理解释这些波的物理来源。我们从液滴下方润滑流的简化模型入手,研究了这种基态对 Tollmien-Schlichting 类型扰动的线性稳定性。我们的研究得出了 Orr-Sommerfeld 方程 (OSE),其特征值给出了扰动的增长率和相速度。通过考虑相对于润滑膜厚度较长的波长,我们对 OSE 进行了扰动求解,从而推导出了最不稳定模式的波长和相速度。我们发现,在实验室考虑的参数范围内,实验与理论之间的一致性令人满意。
{"title":"Waves beneath a drop levitating over a moving wall","authors":"Kyle I. McKee, Bauyrzhan K. Primkulov, Kotaro Hashimoto, Yoshiyuki Tagawa, John W. M. Bush","doi":"10.1103/physrevfluids.9.093603","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.093603","url":null,"abstract":"In recent experiments, [E. Sawaguchi <i>et al.</i>, <span>J. Fluid Mech.</span> <b>862</b>, 261 (2019)] directly probed the lubrication layer of air beneath a droplet levitating inside a rotating cylindrical drum. For small rotation rates of the drum, the lubrication film beneath the drop adopted a steady shape, while at higher rotation rates, traveling waves propagated along the drop's lower surface with roughly half the wall velocity. Here, we rationalize the physical origin of these waves. We begin with a simplified model of the lubrication flow beneath the droplet, and examine the linear stability of this base state to perturbations of the Tollmien-Schlichting type. Our developments lead to the Orr-Sommerfeld equation (OSE), whose eigenvalues give the growth rates and phase speeds of the perturbations. By considering wavelengths long relative to the lubrication film thickness, we solve the OSE perturbatively and so deduce the wavelength and phase velocity of the most unstable mode. We find satisfactory agreement between experiment and theory over the parameter regime considered in the laboratory.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"36 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drainage-induced spontaneous film climbing in capillaries 引流诱导毛细血管自发爬膜
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-16 DOI: 10.1103/physrevfluids.9.094005
P. Pirdavari, H. Tran, Z. He, M. Y. Pack
This study reports the ability with which surface tension gradients are formed plainly by the drainage in a capillary containing a surfactant-laden liquid slug initially held in place by a vacuum. Provided that a thin film forms on the walls transverse to the downward flow, the drainage induces a surfactant gradient (i.e., Marangoni effect), which then leads to a film-climbing event against gravity. The overall climbing effect is limited by the capillary rise height (i.e., propensity for infiltration due to surface tension) and the surfactant gradient formed postmeniscus drainage, thus revealing a twofold role of surface tension in gravity-oriented capillaries hitherto unexplored. The interplay of mechanisms influencing the climbing films include surfactant kinetics, diffusion, and advection of surfactants.
本研究报告介绍了在毛细管中通过排水形成表面张力梯度的能力,毛细管中含有含有表面活性剂的液体蛞蝓,最初由真空固定。只要在向下流动的横向壁上形成一层薄膜,排水就会引起表面活性剂梯度(即马兰戈尼效应),然后导致薄膜在重力作用下爬升。整体爬升效果受到毛细管上升高度(即表面张力导致的渗透倾向)和表面活性剂梯度的限制,从而揭示了表面张力在重力导向毛细管中的双重作用,这一点迄今为止尚未得到研究。影响爬膜的相互作用机制包括表面活性剂动力学、扩散和表面活性剂的平流。
{"title":"Drainage-induced spontaneous film climbing in capillaries","authors":"P. Pirdavari, H. Tran, Z. He, M. Y. Pack","doi":"10.1103/physrevfluids.9.094005","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094005","url":null,"abstract":"This study reports the ability with which surface tension gradients are formed plainly by the drainage in a capillary containing a surfactant-laden liquid slug initially held in place by a vacuum. Provided that a thin film forms on the walls transverse to the downward flow, the drainage induces a surfactant gradient (i.e., Marangoni effect), which then leads to a film-climbing event against gravity. The overall climbing effect is limited by the capillary rise height (i.e., propensity for infiltration due to surface tension) and the surfactant gradient formed postmeniscus drainage, thus revealing a twofold role of surface tension in gravity-oriented capillaries hitherto unexplored. The interplay of mechanisms influencing the climbing films include surfactant kinetics, diffusion, and advection of surfactants.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"65 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release 胶囊悬浮液的粘度:内外粘度比和胶囊破裂释放的影响
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-16 DOI: 10.1103/physrevfluids.9.093602
Huiyong Feng, Haibo Huang, Jian Hou, Chao Li, Bei Wei
This work explores the variation of viscosity of capsule suspension during the process of capsule rupture and polymer release using the immersed-boundary lattice Boltzmann method. The variation of viscosity is classified into three stages in the rupture process: the deformation stage, the rupture stage, and the stable stage. In the process of polymer release, two new stages of the variation of viscosity emerge: the diffusion stage and the dilution stage. Furthermore, the influence of viscosity ratio (λ) on the viscosity is investigated. We find that the effective viscosity grows with λ and approaches the solid particle limit for very large λ, reflecting a similar behavior in the capsule shape. Finally, an available law that relates suspension viscosity to λ, capillary number (Ca), and volume fraction (ϕ) is established. The findings of this research have potential applications in fields such as oil exploration and capsule transportation.
本研究采用浸入式边界晶格玻尔兹曼法探讨了胶囊悬浮液在胶囊破裂和聚合物释放过程中的粘度变化。在胶囊破裂过程中,粘度的变化分为三个阶段:变形阶段、破裂阶段和稳定阶段。在聚合物释放过程中,出现了两个新的粘度变化阶段:扩散阶段和稀释阶段。此外,我们还研究了粘度比 (λ) 对粘度的影响。我们发现,有效粘度随 λ 的增大而增大,当 λ 非常大时,有效粘度接近固体颗粒极限,这反映了胶囊形状的类似行为。最后,建立了悬浮液粘度与 λ、毛细管数 (Ca) 和体积分数 (ϕ) 相关的可用定律。这项研究成果有望应用于石油勘探和胶囊运输等领域。
{"title":"Viscosity of capsule suspensions: Effects of internal-external viscosity ratio and capsule rupture release","authors":"Huiyong Feng, Haibo Huang, Jian Hou, Chao Li, Bei Wei","doi":"10.1103/physrevfluids.9.093602","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.093602","url":null,"abstract":"This work explores the variation of viscosity of capsule suspension during the process of capsule rupture and polymer release using the immersed-boundary lattice Boltzmann method. The variation of viscosity is classified into three stages in the rupture process: the deformation stage, the rupture stage, and the stable stage. In the process of polymer release, two new stages of the variation of viscosity emerge: the diffusion stage and the dilution stage. Furthermore, the influence of viscosity ratio (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math>) on the viscosity is investigated. We find that the effective viscosity grows with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math> and approaches the solid particle limit for very large <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math>, reflecting a similar behavior in the capsule shape. Finally, an available law that relates suspension viscosity to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math>, capillary number (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ca</mi></math>), and volume fraction (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϕ</mi></math>) is established. The findings of this research have potential applications in fields such as oil exploration and capsule transportation.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"7 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examination of the onset and decay of turbulence in pipe flow 检查管道流动中湍流的发生和衰减情况
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-16 DOI: 10.1103/physrevfluids.9.093903
Basheer A. Khan, Shai Arogeti, Alexander Yakhot
The crisis (or critical) Reynolds number (Rec) is established at 1870, describing the threshold beyond which the lifetimes of turbulent puffs prior to the relaminarization extend from O(104)toO(106) time units (D/Um), where D and Um denote the pipe diameter and mean velocity, respectively. To analyze the role of inplane motion for sustaining turbulence, fully resolved direct numerical simulations have been performed to generate a localized, equilibrium turbulent puff at Re=1920. Employing our approach based on proper orthogonal decomposition, the research confirms that azimuthal motion significantly contributes to the transition to turbulence. Notably, at supercritical Reynolds numbers (Re>Rec) ranging from Re=1920 to Re=2100, reducing azimuthal motion energy by 80% substantially shortens the lifetime of turbulent puffs. It has been shown that the relaminarization of turbulent puffs at subcritical Reynolds numbers, Re=17201840, clearly implies an exponential time decay of turbulence energy. The expression for the decay rate was obtained as a best-fit curve of direct numerical simulations.
危机(或临界)雷诺数(Rec)确定为 1870,描述了湍流涌在再层流化之前的寿命从 O(104)-O(106) 个时间单位(D/Um)(其中 D 和 Um 分别表示管道直径和平均速度)所超过的临界值。为了分析平面内运动对维持湍流的作用,我们进行了完全解析的直接数值模拟,以产生 Re=1920 的局部平衡湍流泡。采用我们基于适当正交分解的方法,研究证实方位运动对湍流的过渡有显著作用。值得注意的是,在 Re=1920 到 Re=2100 的超临界雷诺数(Re>Rec)范围内,减少 80% 的方位角运动能量会大大缩短湍流泡的寿命。研究表明,在次临界雷诺数(Re=1720-1840)下,湍流泡的再层流化明显意味着湍流能量的指数时间衰减。衰减率的表达式是通过直接数值模拟得到的最佳拟合曲线。
{"title":"Examination of the onset and decay of turbulence in pipe flow","authors":"Basheer A. Khan, Shai Arogeti, Alexander Yakhot","doi":"10.1103/physrevfluids.9.093903","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.093903","url":null,"abstract":"The crisis (or critical) Reynolds number (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>Re</mtext><mi>c</mi></msub></math>) is established at 1870, describing the threshold beyond which the lifetimes of turbulent puffs prior to the relaminarization extend from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>4</mn></msup><mo>)</mo></mrow><mspace width=\"0.16em\"></mspace><mtext>to</mtext><mspace width=\"0.16em\"></mspace><mi>O</mi><mrow><mo>(</mo><msup><mn>10</mn><mn>6</mn></msup><mo>)</mo></mrow></mrow></math> time units (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>D</mi><mo>/</mo><msub><mi>U</mi><mi>m</mi></msub></mrow></math>), where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>D</mi></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>U</mi><mi>m</mi></msub></math> denote the pipe diameter and mean velocity, respectively. To analyze the role of inplane motion for sustaining turbulence, fully resolved direct numerical simulations have been performed to generate a localized, equilibrium turbulent puff at <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math>. Employing our approach based on proper orthogonal decomposition, the research confirms that azimuthal motion significantly contributes to the transition to turbulence. Notably, at supercritical Reynolds numbers (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>&gt;</mo><msub><mtext>Re</mtext><mi>c</mi></msub></mrow></math>) ranging from <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1920</mn></mrow></math> to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>2100</mn></mrow></math>, reducing azimuthal motion energy by 80% substantially shortens the lifetime of turbulent puffs. It has been shown that the relaminarization of turbulent puffs at subcritical Reynolds numbers, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>Re</mtext><mo>=</mo><mn>1720</mn><mtext>–</mtext><mn>1840</mn></mrow></math>, clearly implies an exponential time decay of turbulence energy. The expression for the decay rate was obtained as a best-fit curve of direct numerical simulations.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"14 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles 用于直接数值模拟含有不溶性表面活性剂的界面流的流体体积和相场耦合方法及其在上升气泡中的应用
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094004
Palas Kumar Farsoiya, Stéphane Popinet, Howard A. Stone, Luc Deike
Improved numerical methods are needed to understand the effect of surfactants in interfacial fluid mechanics, with various applications including thin films, inkjet printing, and ocean-atmosphere interactions. We provide a three-dimensional coupled volume of fluid (VoF) and phase field numerical approach to simulate the effects of insoluble surfactant-laden flows. The framework is validated against analytical cases for surfactant transport and Marangoni stresses. We then systematically investigate a single surfactant-laden rising bubble. The characteristics of a clean bubble rising in a quiescent liquid are governed by nondimensional numbers, i.e., the Galileo number Ga, which compares inertial and viscous effects, and the Bond number Bo, which compares gravitational and surface tension stresses. The effect of insoluble surfactants introduces an additional independent parameter, the Marangoni number Ma, comparing the change in surface tension forces due to gradients in surfactants concentration with viscous forces. We apply our numerical methods to investigate the influence of surfactants (through the Marangoni number) on rising bubbles in otherwise quiescent fluids. We observe that an increase in the Marangoni number first decreases the rise velocity before reaching a limiting value at high Ma. The value of Ma necessary to observe a significant slowdown increases with Ga. We discuss the associated surfactant accumulation and the vortical dynamics when a steady state is reached. Finally, we perform three-dimensional simulations and demonstrate that Marangoni effects can induce a change in the rise trajectory from spiraling to zigzagging for set values of Bo and Ga, consistent with experimental results.
需要改进数值方法来了解表面活性剂在界面流体力学中的影响,其应用领域包括薄膜、喷墨打印和海洋-大气相互作用。我们提供了一种三维耦合流体体积(VoF)和相场数值方法,用于模拟含有不溶性表面活性剂的流动的影响。根据表面活性剂传输和马兰戈尼应力的分析案例对该框架进行了验证。然后,我们系统地研究了单个含表面活性剂的上升气泡。在静止液体中上升的清洁气泡的特性受非量纲数的制约,即伽利略数 Ga(比较惯性效应和粘性效应)和邦德数 Bo(比较重力应力和表面张力应力)。不溶性表面活性剂的影响引入了一个额外的独立参数,即马兰戈尼数 Ma,用于比较表面活性剂浓度梯度引起的表面张力变化与粘性力。我们运用数值方法研究了表面活性剂(通过马兰戈尼数)对静止流体中上升气泡的影响。我们观察到,马兰戈尼数的增加首先会降低上升速度,然后在高 Ma 值时达到极限值。我们讨论了相关的表面活性剂积累以及达到稳定状态时的涡旋动力学。最后,我们进行了三维模拟,并证明马兰戈尼效应可以诱导上升轨迹从螺旋上升到设定 Bo 和 Ga 值的之字形上升,这与实验结果一致。
{"title":"Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles","authors":"Palas Kumar Farsoiya, Stéphane Popinet, Howard A. Stone, Luc Deike","doi":"10.1103/physrevfluids.9.094004","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094004","url":null,"abstract":"Improved numerical methods are needed to understand the effect of surfactants in interfacial fluid mechanics, with various applications including thin films, inkjet printing, and ocean-atmosphere interactions. We provide a three-dimensional coupled volume of fluid (VoF) and phase field numerical approach to simulate the effects of insoluble surfactant-laden flows. The framework is validated against analytical cases for surfactant transport and Marangoni stresses. We then systematically investigate a single surfactant-laden rising bubble. The characteristics of a clean bubble rising in a quiescent liquid are governed by nondimensional numbers, i.e., the Galileo number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ga</mtext></math>, which compares inertial and viscous effects, and the Bond number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Bo</mtext></math>, which compares gravitational and surface tension stresses. The effect of insoluble surfactants introduces an additional independent parameter, the Marangoni number <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math>, comparing the change in surface tension forces due to gradients in surfactants concentration with viscous forces. We apply our numerical methods to investigate the influence of surfactants (through the Marangoni number) on rising bubbles in otherwise quiescent fluids. We observe that an increase in the Marangoni number first decreases the rise velocity before reaching a limiting value at high <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math>. The value of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ma</mtext></math> necessary to observe a significant slowdown increases with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>Ga</mtext></math>. We discuss the associated surfactant accumulation and the vortical dynamics when a steady state is reached. Finally, we perform three-dimensional simulations and demonstrate that Marangoni effects can induce a change in the rise trajectory from spiraling to zigzagging for set values of Bo and Ga, consistent with experimental results.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"32 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence 均质铁流体湍流中的静态和非静态能量级联
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094604
Sukhdev Mouraya, Nandita Pan, Supratik Banerjee
The nonlinear transfer rate of the total energy (transfer rate of kinetic energy + transfer rate due to the work done by the magnetization) for an incompressible turbulent ferrofluid system is studied under the assumption of statistical homogeneity. Using the formalism of the two-point correlators, an exact relation connecting the second-order statistical moments to the average energy injection rate is derived for the scale-to-scale transfer of the total energy. We validate the universality of the exact relation through direct numerical simulations for stationary and nonstationary cascade regimes. For a weak external magnetic field, both kinetic and the total energy cascade with nearly the same cascade rate. A stationary cascade regime is achieved, and hence a good agreement between the exact energy transfer rate and the average energy injection is found. Due to the rapid alignment of the ferrofluid particles in the presence of strong external fields, the turbulence dynamics becomes nonstationary. Interestingly, there too, both kinetic and the total energy exhibit inertial range cascades but with different cascade rates which can be explained using the nonstationary form of our derived exact relation.
在统计均匀性假设下,研究了不可压缩湍流铁流体系统的非线性总能量传递率(动能传递率+磁化做功导致的传递率)。利用两点相关器的形式主义,得出了总能量尺度间转移的二阶统计矩与平均能量注入率之间的精确关系。我们通过对静态和非静态级联状态的直接数值模拟,验证了精确关系的普遍性。对于弱外部磁场,动能和总能以几乎相同的级联速率级联。由于实现了静态级联机制,精确的能量传输速率与平均能量注入之间达成了良好的一致。由于铁流体粒子在强外场作用下快速排列,湍流动力学变得非稳态。有趣的是,在这种情况下,动能和总能也表现出惯性范围级联,但级联速率不同,这可以用我们推导出的精确关系的非稳态形式来解释。
{"title":"Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence","authors":"Sukhdev Mouraya, Nandita Pan, Supratik Banerjee","doi":"10.1103/physrevfluids.9.094604","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094604","url":null,"abstract":"The nonlinear transfer rate of the total energy (transfer rate of kinetic energy <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>+</mo></math> transfer rate due to the work done by the magnetization) for an incompressible turbulent ferrofluid system is studied under the assumption of statistical homogeneity. Using the formalism of the two-point correlators, an exact relation connecting the second-order statistical moments to the average energy injection rate is derived for the scale-to-scale transfer of the total energy. We validate the universality of the exact relation through direct numerical simulations for stationary and nonstationary cascade regimes. For a weak external magnetic field, both kinetic and the total energy cascade with nearly the same cascade rate. A stationary cascade regime is achieved, and hence a good agreement between the exact energy transfer rate and the average energy injection is found. Due to the rapid alignment of the ferrofluid particles in the presence of strong external fields, the turbulence dynamics becomes nonstationary. Interestingly, there too, both kinetic and the total energy exhibit inertial range cascades but with different cascade rates which can be explained using the nonstationary form of our derived exact relation.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"49 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximization of inertial waves focusing in linear and nonlinear regimes 线性和非线性状态下惯性波聚焦的最大化
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-13 DOI: 10.1103/physrevfluids.9.094605
A. Mohamed, A. Delache, F. S. Godeferd, J. Liu, M. Oberlack, Y. Wang
We study the propagation of inertial waves (IWs) generated by an axisymmetric torus oscillating at frequency ωf in a rotating fluid. Inertial waves are emitted from the torus and propagate at an angle θf that depends on the ratio of the rotation frequency of the fluid to the forcing frequency of the torus. The waves focus in a neighborhood of the apex of the propagation cone. Using direct numerical simulations, we characterize the flow in this region, within a linear approximation or in the regime where nonlinear interactions between waves produce a turbulent patch. Forcing by the torus is modeled in two ways. The first model represents the effect of the oscillating torus as a local volume force in the form of a Dirac delta function, called the Dirac ring. The second approach aims at a more realistic three-dimensional model of a torus represented by a volume penalization technique. We observe the appearance of a mean flow composed of a central vortex produced by the nonlinear interaction of the IWs. We show that this phenomenon is in agreement with the theory of Davidson et al. [J. Fluid Mech. 557, 135 (2006)] for a rotating fluid. Using Dirac ring forcing in the linear regime, we obtain the dependence on the propagation angle of the vertical kinetic energy at the focal point, which reaches a maximum for θf=35, in agreement with the linear theory developed by Liu et al. [Phys. Fluids 34, 086601 (2022)]. A similar angle is observed in the 3D torus forcing case for both linear and nonlinear simulations: the angle θf=30 maximizes the vertical velocity and dissipation, attesting an optimal energy transfer from the oscillating source to the focal region. In the nonlinear regime, we obtain the detailed spectral distribution of the kinetic energy in the focal zone, and we develop a spatiotemporal analysis of the velocity field that shows a wide presence of IWs in the flow. Moreover, we identify triadic resonances of IWs that lead to the production of the turbulent patch and of a large-scale mode similar to the geostrophic mean flow.
我们研究了在旋转流体中以 ωf 频率振荡的轴对称环所产生的惯性波(IWs)的传播。惯性波从环上发出并以一定角度θf传播,该角度取决于流体旋转频率与环的强迫频率之比。波聚焦在传播锥顶点附近。通过直接的数值模拟,我们描述了这一区域的流动特征,包括线性近似或波浪之间的非线性相互作用产生湍流补丁的情况。环流的作用有两种模式。第一种模型将振荡环的效应表示为狄拉克三角函数形式的局部体积力,称为狄拉克环。第二种方法旨在通过体积惩罚技术建立一个更真实的环状三维模型。我们观察到由 IWs 非线性相互作用产生的中心漩涡组成的平均流的出现。我们发现这一现象与 Davidson 等人[J. Fluid Mech. 557, 135 (2006)]关于旋转流体的理论一致。利用线性机制中的狄拉克环强迫,我们得到了焦点处垂直动能对传播角度的依赖性,在 θf=35∘ 时达到最大值,这与 Liu 等人[Phys. Fluids 34, 086601 (2022)]提出的线性理论一致。在线性和非线性模拟的三维环形强迫情况下,也观察到了类似的角度:角度θf=30∘使垂直速度和耗散最大化,证明了从振荡源到焦点区域的最佳能量转移。在非线性系统中,我们获得了焦点区动能的详细频谱分布,并对速度场进行了时空分析,结果表明流动中广泛存在 IWs。此外,我们还确定了导致产生湍流斑块和类似于地转平均流的大尺度模式的 IWs 三元共振。
{"title":"Maximization of inertial waves focusing in linear and nonlinear regimes","authors":"A. Mohamed, A. Delache, F. S. Godeferd, J. Liu, M. Oberlack, Y. Wang","doi":"10.1103/physrevfluids.9.094605","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094605","url":null,"abstract":"We study the propagation of inertial waves (IWs) generated by an axisymmetric torus oscillating at frequency <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ω</mi><mi>f</mi></msub></math> in a rotating fluid. Inertial waves are emitted from the torus and propagate at an angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>θ</mi><mi>f</mi></msub></math> that depends on the ratio of the rotation frequency of the fluid to the forcing frequency of the torus. The waves focus in a neighborhood of the apex of the propagation cone. Using direct numerical simulations, we characterize the flow in this region, within a linear approximation or in the regime where nonlinear interactions between waves produce a turbulent patch. Forcing by the torus is modeled in two ways. The first model represents the effect of the oscillating torus as a local volume force in the form of a Dirac delta function, called the Dirac ring. The second approach aims at a more realistic three-dimensional model of a torus represented by a volume penalization technique. We observe the appearance of a mean flow composed of a central vortex produced by the nonlinear interaction of the IWs. We show that this phenomenon is in agreement with the theory of Davidson <i>et al.</i> [<span>J. Fluid Mech.</span> <b>557</b>, 135 (2006)] for a rotating fluid. Using Dirac ring forcing in the linear regime, we obtain the dependence on the propagation angle of the vertical kinetic energy at the focal point, which reaches a maximum for <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><msup><mn>35</mn><mo>∘</mo></msup></mrow></math>, in agreement with the linear theory developed by Liu <i>et al.</i> [<span>Phys. Fluids</span> <b>34</b>, 086601 (2022)]. A similar angle is observed in the 3D torus forcing case for both linear and nonlinear simulations: the angle <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><msup><mn>30</mn><mo>∘</mo></msup></mrow></math> maximizes the vertical velocity and dissipation, attesting an optimal energy transfer from the oscillating source to the focal region. In the nonlinear regime, we obtain the detailed spectral distribution of the kinetic energy in the focal zone, and we develop a spatiotemporal analysis of the velocity field that shows a wide presence of IWs in the flow. Moreover, we identify triadic resonances of IWs that lead to the production of the turbulent patch and of a large-scale mode similar to the geostrophic mean flow.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spreading and engulfment of a viscoelastic film onto a Newtonian droplet 粘弹性薄膜在牛顿液滴上的扩展和吞噬
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1103/physrevfluids.9.094003
Chunheng Zhao, Taehun Lee, Andreas Carlson
We use the conservative phase-field lattice Boltzmann method to investigate the dynamics when a Newtonian droplet comes in contact with an immiscible viscoelastic liquid film. The dynamics of the three liquid phases are explored through numerical simulations, with a focus on illustrating the contact line dynamics and the viscoelastic effects described by the Oldroyd-B model. The droplet dynamics are contrasted with the case of a Newtonian fluid film. The simulations demonstrate that when the film is viscoelastic, the droplet dynamics become insensitive to the film thickness when the polymer viscosity and relaxation time are large. A viscoelastic ridge forms at the moving contact line, which evolves with a power-law dependence on time. By rescaling the interface profile of the ridge using its height and width, it appears to collapse onto a similar shape. Our findings reveal a strong correlation between the viscoelastic stress and the interface shape near the contact line.
我们采用保守相场晶格玻尔兹曼法研究了牛顿液滴与不相溶粘弹性液膜接触时的动力学。我们通过数值模拟探索了三相液体的动力学,重点说明了接触线动力学和 Oldroyd-B 模型所描述的粘弹性效应。液滴动力学与牛顿流体薄膜的情况进行了对比。模拟结果表明,当薄膜具有粘弹性时,当聚合物粘度和弛豫时间较大时,液滴动力学对薄膜厚度不敏感。在移动的接触线上会形成粘弹性脊,它的变化与时间呈幂律关系。通过使用脊的高度和宽度重新标定脊的界面轮廓,它似乎会塌缩成类似的形状。我们的研究结果表明,粘弹性应力与接触线附近的界面形状之间存在很强的相关性。
{"title":"Spreading and engulfment of a viscoelastic film onto a Newtonian droplet","authors":"Chunheng Zhao, Taehun Lee, Andreas Carlson","doi":"10.1103/physrevfluids.9.094003","DOIUrl":"https://doi.org/10.1103/physrevfluids.9.094003","url":null,"abstract":"We use the conservative phase-field lattice Boltzmann method to investigate the dynamics when a Newtonian droplet comes in contact with an immiscible viscoelastic liquid film. The dynamics of the three liquid phases are explored through numerical simulations, with a focus on illustrating the contact line dynamics and the viscoelastic effects described by the Oldroyd-B model. The droplet dynamics are contrasted with the case of a Newtonian fluid film. The simulations demonstrate that when the film is viscoelastic, the droplet dynamics become insensitive to the film thickness when the polymer viscosity and relaxation time are large. A viscoelastic ridge forms at the moving contact line, which evolves with a power-law dependence on time. By rescaling the interface profile of the ridge using its height and width, it appears to collapse onto a similar shape. Our findings reveal a strong correlation between the viscoelastic stress and the interface shape near the contact line.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"58 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1