Monotonic warpings for additive and deep Gaussian processes

Steven D. Barnett, Lauren J. Beesley, Annie S. Booth, Robert B. Gramacy, Dave Osthus
{"title":"Monotonic warpings for additive and deep Gaussian processes","authors":"Steven D. Barnett, Lauren J. Beesley, Annie S. Booth, Robert B. Gramacy, Dave Osthus","doi":"arxiv-2408.01540","DOIUrl":null,"url":null,"abstract":"Gaussian processes (GPs) are canonical as surrogates for computer experiments\nbecause they enjoy a degree of analytic tractability. But that breaks when the\nresponse surface is constrained, say to be monotonic. Here, we provide a\nmono-GP construction for a single input that is highly efficient even though\nthe calculations are non-analytic. Key ingredients include transformation of a\nreference process and elliptical slice sampling. We then show how mono-GP may\nbe deployed effectively in two ways. One is additive, extending monotonicity to\nmore inputs; the other is as a prior on injective latent warping variables in a\ndeep Gaussian process for (non-monotonic, multi-input) non-stationary surrogate\nmodeling. We provide illustrative and benchmarking examples throughout, showing\nthat our methods yield improved performance over the state-of-the-art on\nexamples from those two classes of problems.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian processes (GPs) are canonical as surrogates for computer experiments because they enjoy a degree of analytic tractability. But that breaks when the response surface is constrained, say to be monotonic. Here, we provide a mono-GP construction for a single input that is highly efficient even though the calculations are non-analytic. Key ingredients include transformation of a reference process and elliptical slice sampling. We then show how mono-GP may be deployed effectively in two ways. One is additive, extending monotonicity to more inputs; the other is as a prior on injective latent warping variables in a deep Gaussian process for (non-monotonic, multi-input) non-stationary surrogate modeling. We provide illustrative and benchmarking examples throughout, showing that our methods yield improved performance over the state-of-the-art on examples from those two classes of problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加性和深高斯过程的单调翘曲
高斯过程(GPs)是计算机实验的典型代表,因为它们具有一定程度的可分析性。但是,当响应面受到约束,例如必须是单调的时候,这种可分析性就不复存在了。在这里,我们为单一输入提供了一种单 GP 结构,即使计算是非解析的,它也非常高效。其关键要素包括推理过程的转换和椭圆切片采样。然后,我们展示了如何以两种方式有效地部署单GP。一种是加法,将单调性扩展到更多输入;另一种是作为深高斯过程中注入式潜翘变量的先验,用于(非单调、多输入)非稳态代理建模。我们通篇提供了说明性和基准示例,表明我们的方法在这两类问题的示例中取得了优于最先进方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1