Isothermal crystallization kinetics of commercial PA66 and PA11

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-08-12 DOI:10.1007/s10973-024-13522-9
Laura S. Vázquez, Mercedes Pereira, Ana-María Díaz-Díaz, Jorge López-Beceiro, Ramón Artiaga
{"title":"Isothermal crystallization kinetics of commercial PA66 and PA11","authors":"Laura S. Vázquez,&nbsp;Mercedes Pereira,&nbsp;Ana-María Díaz-Díaz,&nbsp;Jorge López-Beceiro,&nbsp;Ramón Artiaga","doi":"10.1007/s10973-024-13522-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study is aimed at investigating the crystallization kinetics of two structurally related polymers, Nylon 6,6 (PA66) and Nylon 11 (PA11), by differential scanning calorimetry (DSC) in the scope of a logistic-based model using a model fitting approach. By this method, the values of the rate parameters for each specific temperature are obtained from fitting all points of the crystallization exotherm that were accurately recorded at that temperature. This method differs from Arrhenius-based model fitting approaches, in which the initial and final parts of the exotherm do not usually match the shape of Arrhenius-based models and are therefore discarded for fitting. Furthermore, in other kinetic approaches that fall outside the scope of this article, kinetic parameters are typically obtained from specific points in the crystallization exotherm, and good fits cannot generally be obtained nor is that the goal of those approaches. The DSC curves of both polymers obtained at different temperatures are analysed to determine the crystallization kinetics. One of the most insightful parameters of the model is the crystallization rate. Its dependence on temperature is analysed for both polymers and compared to others. The other parameters can also help to better understand some of the crystallization features of these polymers. In addition, the information retrieved from this study can be useful to adjust processing conditions.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 19","pages":"11013 - 11023"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13522-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13522-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study is aimed at investigating the crystallization kinetics of two structurally related polymers, Nylon 6,6 (PA66) and Nylon 11 (PA11), by differential scanning calorimetry (DSC) in the scope of a logistic-based model using a model fitting approach. By this method, the values of the rate parameters for each specific temperature are obtained from fitting all points of the crystallization exotherm that were accurately recorded at that temperature. This method differs from Arrhenius-based model fitting approaches, in which the initial and final parts of the exotherm do not usually match the shape of Arrhenius-based models and are therefore discarded for fitting. Furthermore, in other kinetic approaches that fall outside the scope of this article, kinetic parameters are typically obtained from specific points in the crystallization exotherm, and good fits cannot generally be obtained nor is that the goal of those approaches. The DSC curves of both polymers obtained at different temperatures are analysed to determine the crystallization kinetics. One of the most insightful parameters of the model is the crystallization rate. Its dependence on temperature is analysed for both polymers and compared to others. The other parameters can also help to better understand some of the crystallization features of these polymers. In addition, the information retrieved from this study can be useful to adjust processing conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商用 PA66 和 PA11 的等温结晶动力学
本研究旨在通过差示扫描量热法(DSC),在基于对数模型的范围内,采用模型拟合方法研究两种结构相关聚合物(尼龙 6,6 (PA66) 和尼龙 11 (PA11))的结晶动力学。通过这种方法,每个特定温度下的速率参数值是通过拟合在该温度下准确记录的结晶放热曲线的所有点而得到的。这种方法不同于基于阿伦尼乌斯的模型拟合方法,在这种方法中,放热的初始和最终部分通常不符合基于阿伦尼乌斯模型的形状,因此在拟合时会被舍弃。此外,在本文讨论范围之外的其他动力学方法中,动力学参数通常是从结晶放热过程中的特定点获得的,一般无法获得良好的拟合效果,这也不是这些方法的目标。本文分析了两种聚合物在不同温度下的 DSC 曲线,以确定结晶动力学。该模型最有洞察力的参数之一是结晶速率。分析了两种聚合物的结晶速率与温度的关系,并与其他参数进行了比较。其他参数也有助于更好地理解这些聚合物的一些结晶特征。此外,从本研究中获取的信息还有助于调整加工条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Thermal characterization of plat heat exchanger made from polymer biocomposite reinforced by silicon carbide Recent advances in thermal analysis and calorimetry presented at the 3rd Journal of Thermal Analysis and Calorimetry Conference and 9th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2023) Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature Review about the history of thermal analysis in Hungary Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1