Searching in Euclidean Spaces with Predictions

Sergio Cabello, Panos Giannopoulos
{"title":"Searching in Euclidean Spaces with Predictions","authors":"Sergio Cabello, Panos Giannopoulos","doi":"arxiv-2408.04964","DOIUrl":null,"url":null,"abstract":"We study the problem of searching for a target at some unknown location in\n$\\mathbb{R}^d$ when additional information regarding the position of the target\nis available in the form of predictions. In our setting, predictions come as\napproximate distances to the target: for each point $p\\in \\mathbb{R}^d$ that\nthe searcher visits, we obtain a value $\\lambda(p)$ such that $|p\\mathbf{t}|\\le\n\\lambda(p) \\le c\\cdot |p\\mathbf{t}|$, where $c\\ge 1$ is a fixed constant,\n$\\mathbf{t}$ is the position of the target, and $|p\\mathbf{t}|$ is the\nEuclidean distance of $p$ to $\\mathbf{t}$. The cost of the search is the length\nof the path followed by the searcher. Our main positive result is a strategy\nthat achieves $(12c)^{d+1}$-competitive ratio, even when the constant $c$ is\nunknown. We also give a lower bound of roughly $(c/16)^{d-1}$ on the\ncompetitive ratio of any search strategy in $\\mathbb{R}^d$.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of searching for a target at some unknown location in $\mathbb{R}^d$ when additional information regarding the position of the target is available in the form of predictions. In our setting, predictions come as approximate distances to the target: for each point $p\in \mathbb{R}^d$ that the searcher visits, we obtain a value $\lambda(p)$ such that $|p\mathbf{t}|\le \lambda(p) \le c\cdot |p\mathbf{t}|$, where $c\ge 1$ is a fixed constant, $\mathbf{t}$ is the position of the target, and $|p\mathbf{t}|$ is the Euclidean distance of $p$ to $\mathbf{t}$. The cost of the search is the length of the path followed by the searcher. Our main positive result is a strategy that achieves $(12c)^{d+1}$-competitive ratio, even when the constant $c$ is unknown. We also give a lower bound of roughly $(c/16)^{d-1}$ on the competitive ratio of any search strategy in $\mathbb{R}^d$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用预测在欧几里得空间中搜索
我们研究的问题是,当有关目标位置的额外信息以预测的形式存在时,如何在$\mathbb{R}^d$中的某个未知位置搜索目标。在我们的设置中,预测结果是目标的近似距离:对于搜索者访问的 \mathbb{R}^d$ 中的每个点 $p,我们都会得到一个值 $/lambda(p)$,使得 $|p\mathbf{t}|\le\lambda(p) \le c\cdot |p\mathbf{t}|$ 、其中 $c\ge 1$ 是一个固定常数,$\mathbf{t}$ 是目标的位置,$|p\mathbf{t}|$ 是 $p$ 到 $\mathbf{t}$ 的欧几里得距离。搜索成本是搜索者所走路径的长度。我们的主要正面结果是,即使常数 $c$ 未知,也能实现 $(12c)^{d+1}$ 竞争比的策略。我们还给出了$\mathbb{R}^d$中任何搜索策略的竞争率的下限,大约为$(c/16)^{d-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1