High resolution mapping of nitrogen dioxide and particulate matter in Great Britain (2003–2021) with multi-stage data reconstruction and ensemble machine learning methods

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Pollution Research Pub Date : 2024-08-08 DOI:10.1016/j.apr.2024.102284
Arturo de la Cruz Libardi , Pierre Masselot , Rochelle Schneider , Emily Nightingale , Ai Milojevic , Jacopo Vanoli , Malcolm N. Mistry , Antonio Gasparrini
{"title":"High resolution mapping of nitrogen dioxide and particulate matter in Great Britain (2003–2021) with multi-stage data reconstruction and ensemble machine learning methods","authors":"Arturo de la Cruz Libardi ,&nbsp;Pierre Masselot ,&nbsp;Rochelle Schneider ,&nbsp;Emily Nightingale ,&nbsp;Ai Milojevic ,&nbsp;Jacopo Vanoli ,&nbsp;Malcolm N. Mistry ,&nbsp;Antonio Gasparrini","doi":"10.1016/j.apr.2024.102284","DOIUrl":null,"url":null,"abstract":"<div><p>In this contribution, we applied a multi-stage machine learning (ML) framework to map daily values of nitrogen dioxide (NO<sub>2</sub>) and particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>) at a 1 km<sup>2</sup> resolution over Great Britain for the period 2003–2021. The process combined ground monitoring observations, satellite-derived products, climate reanalyses and chemical transport model datasets, and traffic and land-use data. Each feature was harmonized to 1 km resolution and extracted at monitoring sites. Models used single and ensemble-based algorithms featuring random forests (RF), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), as well as lasso and ridge regression. The various stages focused on augmenting PM<sub>2.5</sub> using co-occurring PM<sub>10</sub> values, gap-filling aerosol optical depth and columnar NO<sub>2</sub> data obtained from satellite instruments, and finally the training of an ensemble model and the prediction of daily values across the whole geographical domain (2003–2021). Results show a good ensemble model performance, calculated through a ten-fold monitor-based cross-validation procedure, with an average R<sup>2</sup> of 0.690 (range 0.611–0.792) for NO<sub>2</sub>, 0.704 (0.609–0.786) for PM<sub>10</sub>, and 0.802 (0.746–0.888) for PM<sub>2.5</sub>. Reconstructed pollution levels decreased markedly within the study period, with a stronger reduction in the latter eight years. The pollutants exhibited different spatial patterns, while NO<sub>2</sub> rose in close proximity to high-traffic areas, PM demonstrated variation at a larger scale. The resulting 1 km<sup>2</sup> spatially resolved daily datasets allow for linkage with health data across Great Britain over nearly two decades, thus contributing to extensive, extended, and detailed research on the long-and short-term health effects of air pollution.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 11","pages":"Article 102284"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1309104224002496/pdfft?md5=e119041ff04ee1dee807ada024e25167&pid=1-s2.0-S1309104224002496-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002496","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this contribution, we applied a multi-stage machine learning (ML) framework to map daily values of nitrogen dioxide (NO2) and particulate matter (PM10 and PM2.5) at a 1 km2 resolution over Great Britain for the period 2003–2021. The process combined ground monitoring observations, satellite-derived products, climate reanalyses and chemical transport model datasets, and traffic and land-use data. Each feature was harmonized to 1 km resolution and extracted at monitoring sites. Models used single and ensemble-based algorithms featuring random forests (RF), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), as well as lasso and ridge regression. The various stages focused on augmenting PM2.5 using co-occurring PM10 values, gap-filling aerosol optical depth and columnar NO2 data obtained from satellite instruments, and finally the training of an ensemble model and the prediction of daily values across the whole geographical domain (2003–2021). Results show a good ensemble model performance, calculated through a ten-fold monitor-based cross-validation procedure, with an average R2 of 0.690 (range 0.611–0.792) for NO2, 0.704 (0.609–0.786) for PM10, and 0.802 (0.746–0.888) for PM2.5. Reconstructed pollution levels decreased markedly within the study period, with a stronger reduction in the latter eight years. The pollutants exhibited different spatial patterns, while NO2 rose in close proximity to high-traffic areas, PM demonstrated variation at a larger scale. The resulting 1 km2 spatially resolved daily datasets allow for linkage with health data across Great Britain over nearly two decades, thus contributing to extensive, extended, and detailed research on the long-and short-term health effects of air pollution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多阶段数据重建和集合机器学习方法绘制大不列颠二氧化氮和颗粒物高分辨率地图(2003-2021 年
在这篇论文中,我们采用了多阶段机器学习(ML)框架,以 1 千米的分辨率绘制了 2003-2021 年期间大不列颠上空的二氧化氮(NO)和颗粒物(PM 和 PM)日值图。该过程结合了地面监测观测、卫星衍生产品、气候再分析和化学传输模型数据集以及交通和土地利用数据。每个特征都统一为 1 公里分辨率,并在监测点提取。模型采用了基于单个和集合的算法,包括随机森林 (RF)、极端梯度提升 (XGB)、轻梯度提升机 (LGBM),以及套索和脊回归。各阶段的重点是利用共同出现的可吸入颗粒物数值、卫星仪器获得的气溶胶光学深度和柱状氮氧化物数据填补空白来增强可吸入颗粒物,最后训练一个集合模型并预测整个地理区域(2003-2021 年)的每日数值。结果表明,通过十倍监测交叉验证程序计算得出的集合模型性能良好,NO 的平均 R 值为 0.690(范围为 0.611-0.792),PM 为 0.704(0.609-0.786),PM 为 0.802(0.746-0.888)。重建后的污染水平在研究期内明显下降,后八年的降幅更大。污染物表现出不同的空间模式,氮氧化物在靠近交通繁忙地区上升,而可吸入颗粒物则在更大范围内表现出变化。由此产生的 1 千米空间分辨率日数据集可以与大不列颠近二十年来的健康数据联系起来,从而有助于对空气污染的长期和短期健康影响进行广泛、深入和详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
期刊最新文献
Editorial Board Concurrent measurements of atmospheric Hg in outdoor and indoor at a megacity in Southeast Asia: First insights from the region Investigating the role of photochemistry and impact of regional and local contributions on gaseous pollutant concentrations (NO, NO2, O3, CO, and SO2) at urban and suburban sites Sensitivity of AERMOD (V21112) RLINEXT dispersion model outputs by source type to variability in single noise barrier height and separation distance Carbonaceous aerosol emissions from secondary lighting sources: Emission factors and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1