D. C. Williams, A. Riahi, A. Carcea, J. D. Giallonardo, P. Keech, S. Y. Persaud, M. R. Daymond, R. C. Newman
{"title":"Hydrogen embrittlement and strain rate sensitivity of electrodeposited copper: part I – the effect of hydrogen content","authors":"D. C. Williams, A. Riahi, A. Carcea, J. D. Giallonardo, P. Keech, S. Y. Persaud, M. R. Daymond, R. C. Newman","doi":"10.1038/s41529-024-00498-y","DOIUrl":null,"url":null,"abstract":"Slow strain rate tensile testing was conducted on electrodeposited copper, which is a candidate coating material for used nuclear fuel containers. Embrittlement was observed in electrodeposited copper containing 26.4 ± 1.0 ppm hydrogen, with a strain rate sensitivity such that the embrittlement was exacerbated at lower strain rate (5 × 10−7 s−1). Tensile tests conducted at 100° and 200 °C also intensified embrittlement when compared with tests conducted at room temperature. In contrast, electrodeposited copper containing only 5.25 ± 0.97 ppm hydrogen exhibited ductile behavior at all tested strain rates and temperatures. These findings suggest that a previously unexplained slow strain rate hydrogen embrittlement can operate in electrodeposited copper provided that the hydrogen concentration is sufficiently high. Further analyses revealed that the deformation of embrittled copper is achieved by the formation of internal microcracks which coalesce at the point of failure.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00498-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00498-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Slow strain rate tensile testing was conducted on electrodeposited copper, which is a candidate coating material for used nuclear fuel containers. Embrittlement was observed in electrodeposited copper containing 26.4 ± 1.0 ppm hydrogen, with a strain rate sensitivity such that the embrittlement was exacerbated at lower strain rate (5 × 10−7 s−1). Tensile tests conducted at 100° and 200 °C also intensified embrittlement when compared with tests conducted at room temperature. In contrast, electrodeposited copper containing only 5.25 ± 0.97 ppm hydrogen exhibited ductile behavior at all tested strain rates and temperatures. These findings suggest that a previously unexplained slow strain rate hydrogen embrittlement can operate in electrodeposited copper provided that the hydrogen concentration is sufficiently high. Further analyses revealed that the deformation of embrittled copper is achieved by the formation of internal microcracks which coalesce at the point of failure.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies