Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-11-09 DOI:10.1038/s41529-024-00519-w
Jiheon Jun, Amit Shyam, Sumit Bahl, Yi-Feng Su, J. Allen Haynes
{"title":"Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution","authors":"Jiheon Jun, Amit Shyam, Sumit Bahl, Yi-Feng Su, J. Allen Haynes","doi":"10.1038/s41529-024-00519-w","DOIUrl":null,"url":null,"abstract":"Corrosion behavior of cast Al-Cu-Mn-Zr (ACMZ) and RR350 alloys was compared to a cast 319 alloy in 3.5 wt.% NaCl. After 168 h immersion, ACMZ and RR350 alloys suffered from preferential attack adjacent to intermetallic particles decorated at grain boundaries while the attack in 319 occurred in eutectic Al-Si dendritic boundaries. Electrochemical data allowed semiquantitative comparison of alloy resistance to corrosion initiation, and ACMZ type alloys, including RR350 and three alloys with higher Cu, were considered more resistant than 319 due to the absence of deleterious Si particles. In case of 319, such Si particles presumably drove higher micro-galvanic influence to initiate and sustain Al corrosion. With lower susceptibility to corrosion initiation, ACMZ alloys should exhibit higher or at minimum similar resistance compared to cast 319.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-16"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00519-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00519-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion behavior of cast Al-Cu-Mn-Zr (ACMZ) and RR350 alloys was compared to a cast 319 alloy in 3.5 wt.% NaCl. After 168 h immersion, ACMZ and RR350 alloys suffered from preferential attack adjacent to intermetallic particles decorated at grain boundaries while the attack in 319 occurred in eutectic Al-Si dendritic boundaries. Electrochemical data allowed semiquantitative comparison of alloy resistance to corrosion initiation, and ACMZ type alloys, including RR350 and three alloys with higher Cu, were considered more resistant than 319 due to the absence of deleterious Si particles. In case of 319, such Si particles presumably drove higher micro-galvanic influence to initiate and sustain Al corrosion. With lower susceptibility to corrosion initiation, ACMZ alloys should exhibit higher or at minimum similar resistance compared to cast 319.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3.5% NaCl 溶液中 Al-Cu-Mn-Zr 铸造合金的腐蚀评估
将铸造的 Al-Cu-Mn-Zr (ACMZ) 和 RR350 合金与铸造的 319 合金在 3.5 wt.% 氯化钠中的腐蚀行为进行了比较。浸泡 168 小时后,ACMZ 和 RR350 合金在晶界金属间微粒附近受到优先侵蚀,而 319 合金的侵蚀发生在共晶铝-硅树枝状晶界。电化学数据可对合金的抗腐蚀能力进行半定量比较,ACMZ 型合金(包括 RR350 和三种铜含量较高的合金)由于不含有害的硅颗粒,因此被认为比 319 的抗腐蚀能力更强。就 319 而言,这些硅颗粒可能会产生更高的微电蚀作用,从而引发和维持铝腐蚀。与铸件 319 相比,ACMZ 合金的腐蚀起始敏感性较低,因此应表现出更高或最低类似的耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Mechanisms of corrosive freeze-thaw damage in AA7075 using time-resolved x-ray microtomography and correlative electron microscopy Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404 Feedback effect of the size of mineral particles on the molecular mechanisms employed by Caballeronia mineralivorans PML1(12) to weather minerals Assessing the feasibility of using a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors XGBoost model for the quantitative assessment of stress corrosion cracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1