Nakkyu Chae, Seungjin Seo, Richard I. Foster, Sungyeol Choi
{"title":"Oxic corrosion model for KAERI Reference disposal system via O2 consumption reactions and mixed-potential theory","authors":"Nakkyu Chae, Seungjin Seo, Richard I. Foster, Sungyeol Choi","doi":"10.1038/s41529-024-00497-z","DOIUrl":null,"url":null,"abstract":"The durability of copper (Cu) canisters against corrosion is critical for the licensing of deep geological repositories. Assessing oxic corrosion, a primary degradation mechanism, is essential for ensuring the reliability of such repositories. Due to the complex interactions influencing oxic corrosion, a comprehensive model is necessary for evaluating Cu canister corrosion. This study develops a model for the KAERI Reference Disposal System (KRS), incorporating mixed-potential theory with key O2 consumption reactions, including Cu corrosion, Cu(I) oxidation, FeS2 oxidation, aerobic microbial activity, and O2 dissolution and consumption. Simulation of 11 scenarios revealed that the representative KRS case would experience a maximum corrosion depth of 9.3 μm on the Cu canister after 2.3 years due to oxic corrosion, under conditions that are unfavorable for the initiation of pitting corrosion. These results suggest that oxic corrosion is not a threat to the isolation of spent nuclear fuels in KRS.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00497-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00497-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The durability of copper (Cu) canisters against corrosion is critical for the licensing of deep geological repositories. Assessing oxic corrosion, a primary degradation mechanism, is essential for ensuring the reliability of such repositories. Due to the complex interactions influencing oxic corrosion, a comprehensive model is necessary for evaluating Cu canister corrosion. This study develops a model for the KAERI Reference Disposal System (KRS), incorporating mixed-potential theory with key O2 consumption reactions, including Cu corrosion, Cu(I) oxidation, FeS2 oxidation, aerobic microbial activity, and O2 dissolution and consumption. Simulation of 11 scenarios revealed that the representative KRS case would experience a maximum corrosion depth of 9.3 μm on the Cu canister after 2.3 years due to oxic corrosion, under conditions that are unfavorable for the initiation of pitting corrosion. These results suggest that oxic corrosion is not a threat to the isolation of spent nuclear fuels in KRS.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies