{"title":"Enhanced phase sensitivity in a feedback-assisted interferometer","authors":"Gao-Feng Jiao","doi":"10.1088/1367-2630/ad69b9","DOIUrl":null,"url":null,"abstract":"The topology of feedback optical parametric amplifier (FOPA) renders a number of significant advantages over the topology of traditional optical parametric amplifier (TOPA) such as a higher degree of quantum correlation, all-phase entanglement enhancement, and the robustness of the losses. Here, we propose a feedback-assisted interferometer based on the topology of FOPA for quantum metrology. We theoretically study the phase sensitivity with the method of homodyne detection and product detection. By manipulating the feedback strength of the FOPA, the phase sensitivity can be further enhanced, and approach the quantum Cramér-Rao bound. Furthermore, we demonstrate that our proposal is superior to the SU(1,1) interferometer based on the topology of TOPA.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"2012 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad69b9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The topology of feedback optical parametric amplifier (FOPA) renders a number of significant advantages over the topology of traditional optical parametric amplifier (TOPA) such as a higher degree of quantum correlation, all-phase entanglement enhancement, and the robustness of the losses. Here, we propose a feedback-assisted interferometer based on the topology of FOPA for quantum metrology. We theoretically study the phase sensitivity with the method of homodyne detection and product detection. By manipulating the feedback strength of the FOPA, the phase sensitivity can be further enhanced, and approach the quantum Cramér-Rao bound. Furthermore, we demonstrate that our proposal is superior to the SU(1,1) interferometer based on the topology of TOPA.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.