Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?
{"title":"Multimodal electrical impedance tomography and electroencephalography imaging: Does higher skull conductivity resolution in EIT imaging improve accuracy of EEG source localization?","authors":"Ville Rimpiläinen, Alexandra Koulouri","doi":"10.1101/2024.08.05.606582","DOIUrl":null,"url":null,"abstract":"<strong>Objective</strong> Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.05.606582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective Unknown conductivities of the head tissues, particularly the skull, is a major factor of uncertainty in electroencephalography (EEG) source imaging. Here, we develop a personalized skull conductivity framework aiming to improve the head models used in the EEG source imaging and to reduce localization errors.