Engineered Receptors for Soluble Cell-to-Cell Communication

Dan Ilya Piraner, Mohamad H Abedi, Maria J Duran Gonzalez, Adam Chazin-Gray, Iowis Zhu, Pavithran T Ravindran, Thomas Schlichthaerle, Buwei Huang, David Lee, David Baker, Kole T Roybal
{"title":"Engineered Receptors for Soluble Cell-to-Cell Communication","authors":"Dan Ilya Piraner, Mohamad H Abedi, Maria J Duran Gonzalez, Adam Chazin-Gray, Iowis Zhu, Pavithran T Ravindran, Thomas Schlichthaerle, Buwei Huang, David Lee, David Baker, Kole T Roybal","doi":"10.1101/2024.09.17.613377","DOIUrl":null,"url":null,"abstract":"Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and in turn activate cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but to date only receptors against cell surface targets have approached clinical translation. To address this gap, we developed a receptor based on SynNotch, called synthetic intramembrane proteolysis receptors (SNIPRs), that have the added ability to be activated by soluble ligands, both natural and synthetic, with remarkably low baseline activity and high fold activation. SNIPRs are able to access an endocytic, pH-dependent cleavage mechanism to achieve soluble ligand sensing, in addition to employing a canonical-like pathway for detecting surface-bound ligands. We demonstrate the therapeutic capabilities of the receptor platform by localizing the activity of CAR T-cells to solid tumors where soluble disease-associated factors are expressed, bypassing the major hurdle of on-target off-tumor toxicity in bystander organs. We further applied the SNIPR platform to engineer fully synthetic signaling networks between cells orthogonal to natural signaling pathways, expanding the scope of synthetic biology. Our design framework enables cellular communication and environmental interactions, extending the capabilities of synthetic cellular networking in clinical and research contexts.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and in turn activate cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but to date only receptors against cell surface targets have approached clinical translation. To address this gap, we developed a receptor based on SynNotch, called synthetic intramembrane proteolysis receptors (SNIPRs), that have the added ability to be activated by soluble ligands, both natural and synthetic, with remarkably low baseline activity and high fold activation. SNIPRs are able to access an endocytic, pH-dependent cleavage mechanism to achieve soluble ligand sensing, in addition to employing a canonical-like pathway for detecting surface-bound ligands. We demonstrate the therapeutic capabilities of the receptor platform by localizing the activity of CAR T-cells to solid tumors where soluble disease-associated factors are expressed, bypassing the major hurdle of on-target off-tumor toxicity in bystander organs. We further applied the SNIPR platform to engineer fully synthetic signaling networks between cells orthogonal to natural signaling pathways, expanding the scope of synthetic biology. Our design framework enables cellular communication and environmental interactions, extending the capabilities of synthetic cellular networking in clinical and research contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细胞间可溶性通信的工程受体
尽管哺乳动物合成生物学取得了最新进展,但仍缺乏能对可溶性配体做出强有力反应并进而激活细胞功能的模块化合成受体。这种受体在调节工程治疗细胞的活性方面具有广泛的临床潜力,但迄今为止,只有针对细胞表面靶点的受体已接近临床转化。为了填补这一空白,我们开发了一种基于 SynNotch 的受体,称为合成膜内蛋白水解受体(SNIPRs),这种受体还能被天然和合成的可溶性配体激活,基线活性极低,激活倍数极高。SNIPRs 除了采用类似于典范的途径检测表面结合配体外,还能通过内吞、pH 依赖性裂解机制实现可溶性配体感应。我们通过将 CAR T 细胞的活性定位到表达可溶性疾病相关因子的实体瘤上,证明了该受体平台的治疗能力,从而绕过了旁观器官的靶向非肿瘤毒性这一主要障碍。我们进一步应用 SNIPR 平台,在细胞间设计出与自然信号通路正交的全合成信号网络,从而扩大了合成生物学的范围。我们的设计框架实现了细胞通信和环境互动,拓展了合成细胞网络在临床和研究方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1