{"title":"Enhanced CO2 electroreduction to C2+ production on asymmetric Zn-O-Cu sites via tuning of *CO intermediate adsorption","authors":"Zijian Fang, Weiwei Guo, Guixian Xie, Guoliang Mei, Yanling Zhai, Zhijun Zhu, Xiaoquan Lu, Jianguo Tang","doi":"10.1016/j.apcatb.2024.124473","DOIUrl":null,"url":null,"abstract":"The electrochemical CO reduction reaction conducted presents a promising strategy to facilitate the artificial carbon cycle. Unfortunately, the efficiency of eCORR-to-C remains below the level required for large-scale implementation due to complex multi-electron transfer and sluggish carbon-carbon coupling. Herein, we constructed asymmetric Zn-O-Cu sites on 2.12 %Zn/CuO, which achieving a maximum C product FE of 78.77 ± 1.90 % and a high current density of 408.3 mA cm. Experimental and theoretical studies reveal that the O-bridged asymmetric Zn-O-Cu sites exhibit enhanced electron transfer, which plays a pivotal role in improving the coverage of *CO and adjusting the adsorption strength of the *CO. The optimal adsorption capacity of the *CO on 2.12 %Zn/CuO facilitated the subsequent hydrogenation reaction to enhance the conversion of *CO to *COH. Consequently, the asymmetric Zn-O-Cu sites proved to be more thermodynamically favorable for the asymmetric coupling between *CO and *COH, which is conducive to the production of C products.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical CO reduction reaction conducted presents a promising strategy to facilitate the artificial carbon cycle. Unfortunately, the efficiency of eCORR-to-C remains below the level required for large-scale implementation due to complex multi-electron transfer and sluggish carbon-carbon coupling. Herein, we constructed asymmetric Zn-O-Cu sites on 2.12 %Zn/CuO, which achieving a maximum C product FE of 78.77 ± 1.90 % and a high current density of 408.3 mA cm. Experimental and theoretical studies reveal that the O-bridged asymmetric Zn-O-Cu sites exhibit enhanced electron transfer, which plays a pivotal role in improving the coverage of *CO and adjusting the adsorption strength of the *CO. The optimal adsorption capacity of the *CO on 2.12 %Zn/CuO facilitated the subsequent hydrogenation reaction to enhance the conversion of *CO to *COH. Consequently, the asymmetric Zn-O-Cu sites proved to be more thermodynamically favorable for the asymmetric coupling between *CO and *COH, which is conducive to the production of C products.