Qinyue Wu, Xinfei Fan, Kaiyuan Liu, Xie Quan, Yanming Liu
{"title":"Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles","authors":"Qinyue Wu, Xinfei Fan, Kaiyuan Liu, Xie Quan, Yanming Liu","doi":"10.1016/j.apcatb.2024.124597","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction to ammonia is a promising method to mitigate nitrate contamination and produce valuable chemical. However, it still suffers from slow active hydrogen (*H) transfer kinetics and unfavorable thermodynamics. Here the *H transfer and reaction energy barrier of nitrate reduction reaction were regulated on B-doped Cu nanoneedles (Cu NNs-B) to enhance ammonia electrosynthesis via interfacial engineering. The high-curvature nanoneedles showed locally enhanced electric fields, which promoted *H supply from water dissociation. B-doping provided Cu/Cu active sites for the activation of nitrate and intermediates. Due to the simultaneously improved *H supply kinetics and reaction thermodynamics, Cu NNs-B was efficient for reducing nitrate to ammonia, achieving high Faradaic efficiencies (FEs) of 95.1–98.6 % and ammonia yields of 0.12–1.33 mmol·h·cm at 50–1500 mg·L NO-N. Nitrate was selectively converted to ammonia with the remaining nitrate and nitrite concentrations below drinking water standards. Experimental and DFT results revealed Cu NNs-B with properly higher nanotip curvature was more favorable for boosting ammonia electrosynthesis from both kinetics and thermodynamics.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic nitrate reduction to ammonia is a promising method to mitigate nitrate contamination and produce valuable chemical. However, it still suffers from slow active hydrogen (*H) transfer kinetics and unfavorable thermodynamics. Here the *H transfer and reaction energy barrier of nitrate reduction reaction were regulated on B-doped Cu nanoneedles (Cu NNs-B) to enhance ammonia electrosynthesis via interfacial engineering. The high-curvature nanoneedles showed locally enhanced electric fields, which promoted *H supply from water dissociation. B-doping provided Cu/Cu active sites for the activation of nitrate and intermediates. Due to the simultaneously improved *H supply kinetics and reaction thermodynamics, Cu NNs-B was efficient for reducing nitrate to ammonia, achieving high Faradaic efficiencies (FEs) of 95.1–98.6 % and ammonia yields of 0.12–1.33 mmol·h·cm at 50–1500 mg·L NO-N. Nitrate was selectively converted to ammonia with the remaining nitrate and nitrite concentrations below drinking water standards. Experimental and DFT results revealed Cu NNs-B with properly higher nanotip curvature was more favorable for boosting ammonia electrosynthesis from both kinetics and thermodynamics.