At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production

Junpeng Yue, Hanpei Yang, Lei Zhou, Chen Liu, Shi Wang, Xudong Kang
{"title":"At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production","authors":"Junpeng Yue, Hanpei Yang, Lei Zhou, Chen Liu, Shi Wang, Xudong Kang","doi":"10.1016/j.apcatb.2024.124599","DOIUrl":null,"url":null,"abstract":"Benefit origins of potassium (K) and sodium (Na) co-doping on carbon nitride for integrating pharmaceutical degradation and hydrogen peroxide (HO) production was investigated. K and Na co-doped carbon nitride (CN-K/Na) with modified crystallinity and surface structure was synthesized by ionothermal polymerization of urea. The CN-K/Na exhibited an apparent quantum yield of 26.2 % in HO photosynthesis at 400 nm (isopropanol as proton donor), and it was better at extracting proton from pharmaceutical-laden wastewater to produce HO than pristine carbon nitride. These superior performances are attributed to the benefits directly or indirectly caused by the co-doping: i) Na optimizes in-plane charge transfer, ii) K builds channel for interplane charge transfer, iii) cyano group as Lewis acid site adsorbs and activates oxygen, iv) amino group as Lewis base site extracts and releases protons, v) increased visible-light absorption. This work offers significant insights into designing polymeric photocatalysts for environmental management and energy conservation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Benefit origins of potassium (K) and sodium (Na) co-doping on carbon nitride for integrating pharmaceutical degradation and hydrogen peroxide (HO) production was investigated. K and Na co-doped carbon nitride (CN-K/Na) with modified crystallinity and surface structure was synthesized by ionothermal polymerization of urea. The CN-K/Na exhibited an apparent quantum yield of 26.2 % in HO photosynthesis at 400 nm (isopropanol as proton donor), and it was better at extracting proton from pharmaceutical-laden wastewater to produce HO than pristine carbon nitride. These superior performances are attributed to the benefits directly or indirectly caused by the co-doping: i) Na optimizes in-plane charge transfer, ii) K builds channel for interplane charge transfer, iii) cyano group as Lewis acid site adsorbs and activates oxygen, iv) amino group as Lewis base site extracts and releases protons, v) increased visible-light absorption. This work offers significant insights into designing polymeric photocatalysts for environmental management and energy conservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
至少五个:在氮化碳上掺入钾和钠以整合药物降解和过氧化氢生产的效益来源
研究了在氮化碳上共掺杂钾(K)和钠(Na)以整合药物降解和过氧化氢(HO)生产的益处。通过尿素的离子热聚合合成了钾和钠共掺杂的氮化碳(CN-K/Na),其结晶度和表面结构均有所改变。在 400 纳米波长的 HO 光合作用中,CN-K/Na 的表观量子产率为 26.2%(以异丙醇为质子供体),与原始氮化碳相比,它能更好地从含药废水中提取质子来产生 HO。这些优异的性能归功于共掺杂直接或间接带来的好处:i) Na 优化了面内电荷转移;ii) K 为面间电荷转移建立了通道;iii) 作为路易斯酸位点的氰基吸附并激活了氧;iv) 作为路易斯碱位点的氨基萃取并释放了质子;v) 增加了对可见光的吸收。这项工作为设计用于环境管理和节能的聚合物光催化剂提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unusually improved peracetic acid activation for ultrafast organic compound removal through redox-inert Mg incorporation into active Co3O4 Photoelectrocatalytic allylic C–H oxidation to allylic alcohols coupled with hydrogen evolution Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1