Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions
Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo
{"title":"Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions","authors":"Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo","doi":"10.1016/j.apcatb.2024.124471","DOIUrl":null,"url":null,"abstract":"The inhibition of oxidation efficiency and the formation of toxic chlorinated organic byproducts owing to Cl still represent a significant threat to the treatment of high chloride organic wastewater using advanced oxidation processes. This study explores new pathways for utilizing Cl to promote the formation of Fe(Ⅳ)=O by single atom Fe-CNs catalysts under peroxymonosulfate (PMS) system, which significantly increases sulfamethoxazole (SMX) degradation rate constant by 2.97 times, enhances PMS utilization efficiency (reducing by 92 % PMS consumption) and simultaneously avoids the formation of chlorinated organic byproducts. Experiments and theoretical calculation revealed that the in-situ generated HClO (generated via the reaction of PMS and Cl) more easily reacts with Fe–pyridinic N active sites of Fe-CNs catalysts to generate Fe(Ⅳ)=O through a lower-energy-barrier pathway, rather than directly oxidates pollutants. This study provides an approach to utilize omnipresent Cl achieving high efficiency, high selectivity, low PMS consumption and harmless treatment for chloride-containing organic wastewaters.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of oxidation efficiency and the formation of toxic chlorinated organic byproducts owing to Cl still represent a significant threat to the treatment of high chloride organic wastewater using advanced oxidation processes. This study explores new pathways for utilizing Cl to promote the formation of Fe(Ⅳ)=O by single atom Fe-CNs catalysts under peroxymonosulfate (PMS) system, which significantly increases sulfamethoxazole (SMX) degradation rate constant by 2.97 times, enhances PMS utilization efficiency (reducing by 92 % PMS consumption) and simultaneously avoids the formation of chlorinated organic byproducts. Experiments and theoretical calculation revealed that the in-situ generated HClO (generated via the reaction of PMS and Cl) more easily reacts with Fe–pyridinic N active sites of Fe-CNs catalysts to generate Fe(Ⅳ)=O through a lower-energy-barrier pathway, rather than directly oxidates pollutants. This study provides an approach to utilize omnipresent Cl achieving high efficiency, high selectivity, low PMS consumption and harmless treatment for chloride-containing organic wastewaters.