Scaling and universality for percolation in random networks: a unified view

Lorenzo Cirigliano, Gábor Timár, Claudio Castellano
{"title":"Scaling and universality for percolation in random networks: a unified view","authors":"Lorenzo Cirigliano, Gábor Timár, Claudio Castellano","doi":"arxiv-2408.05125","DOIUrl":null,"url":null,"abstract":"Percolation processes on random networks have been the subject of intense\nresearch activity over the last decades: the overall phenomenology of standard\npercolation on uncorrelated and unclustered topologies is well known. Still\nsome critical properties of the transition, in particular for heterogeneous\nsubstrates, have not been fully elucidated and contradictory results appear in\nthe literature. In this paper we present, by means of a generating functions\napproach, a thorough and complete investigation of percolation critical\nproperties in random networks. We determine all critical exponents, the\nassociated critical amplitude ratios and the form of the cluster size\ndistribution for networks of any level of heterogeneity. We uncover, in\nparticular for highly heterogeneous networks, subtle crossover phenomena,\nnontrivial scaling forms and violations of hyperscaling. In this way we clarify\nthe origin of inconsistencies in the previous literature.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Percolation processes on random networks have been the subject of intense research activity over the last decades: the overall phenomenology of standard percolation on uncorrelated and unclustered topologies is well known. Still some critical properties of the transition, in particular for heterogeneous substrates, have not been fully elucidated and contradictory results appear in the literature. In this paper we present, by means of a generating functions approach, a thorough and complete investigation of percolation critical properties in random networks. We determine all critical exponents, the associated critical amplitude ratios and the form of the cluster size distribution for networks of any level of heterogeneity. We uncover, in particular for highly heterogeneous networks, subtle crossover phenomena, nontrivial scaling forms and violations of hyperscaling. In this way we clarify the origin of inconsistencies in the previous literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机网络中渗流的扩展性和普遍性:统一观点
在过去几十年里,随机网络上的渗流过程一直是激烈研究的主题:在无相关和无聚类拓扑结构上的标准渗流的整体现象是众所周知的。但是,过渡的一些关键特性,特别是对于异质基底,尚未完全阐明,文献中也出现了相互矛盾的结果。在本文中,我们通过生成函数方法,对随机网络中的渗滤临界性质进行了全面而完整的研究。我们确定了任何异质性网络的所有临界指数、相关临界振幅比和簇大小分布形式。特别是对于高度异构网络,我们发现了微妙的交叉现象、非对称的缩放形式和违反超缩放的现象。通过这种方式,我们澄清了以往文献中不一致之处的根源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1