Self-supervised learning for fine-grained monocular 3D face reconstruction in the wild

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-05 DOI:10.1007/s00530-024-01436-3
Dongjin Huang, Yongsheng Shi, Jinhua Liu, Wen Tang
{"title":"Self-supervised learning for fine-grained monocular 3D face reconstruction in the wild","authors":"Dongjin Huang, Yongsheng Shi, Jinhua Liu, Wen Tang","doi":"10.1007/s00530-024-01436-3","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing 3D face from monocular images is a challenging computer vision task, due to the limitations of traditional 3DMM (3D Morphable Model) and the lack of high-fidelity 3D facial scanning data. To solve this issue, we propose a novel coarse-to-fine self-supervised learning framework for reconstructing fine-grained 3D faces from monocular images in the wild. In the coarse stage, face parameters extracted from a single image are used to reconstruct a coarse 3D face through a 3DMM. In the refinement stage, we design a wavelet transform perception model to extract facial details in different frequency domains from an input image. Furthermore, we propose a depth displacement module based on the wavelet transform perception model to generate a refined displacement map from the unwrapped UV textures of the input image and rendered coarse face, which can be used to synthesize detailed 3D face geometry. Moreover, we propose a novel albedo map module based on the wavelet transform perception model to capture high-frequency texture information and generate a detailed albedo map consistent with face illumination. The detailed face geometry and albedo map are used to reconstruct a fine-grained 3D face without any labeled data. We have conducted extensive experiments that demonstrate the superiority of our method over existing state-of-the-art approaches for 3D face reconstruction on four public datasets including CelebA, LS3D, LFW, and NoW benchmark. The experimental results indicate that our method achieved higher accuracy and robustness, particularly of under the challenging conditions such as occlusion, large poses, and varying illuminations.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01436-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing 3D face from monocular images is a challenging computer vision task, due to the limitations of traditional 3DMM (3D Morphable Model) and the lack of high-fidelity 3D facial scanning data. To solve this issue, we propose a novel coarse-to-fine self-supervised learning framework for reconstructing fine-grained 3D faces from monocular images in the wild. In the coarse stage, face parameters extracted from a single image are used to reconstruct a coarse 3D face through a 3DMM. In the refinement stage, we design a wavelet transform perception model to extract facial details in different frequency domains from an input image. Furthermore, we propose a depth displacement module based on the wavelet transform perception model to generate a refined displacement map from the unwrapped UV textures of the input image and rendered coarse face, which can be used to synthesize detailed 3D face geometry. Moreover, we propose a novel albedo map module based on the wavelet transform perception model to capture high-frequency texture information and generate a detailed albedo map consistent with face illumination. The detailed face geometry and albedo map are used to reconstruct a fine-grained 3D face without any labeled data. We have conducted extensive experiments that demonstrate the superiority of our method over existing state-of-the-art approaches for 3D face reconstruction on four public datasets including CelebA, LS3D, LFW, and NoW benchmark. The experimental results indicate that our method achieved higher accuracy and robustness, particularly of under the challenging conditions such as occlusion, large poses, and varying illuminations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
野外细粒度单目三维人脸重建的自我监督学习
由于传统 3DMM(三维可变形模型)的局限性和高保真三维面部扫描数据的缺乏,从单目图像重建三维人脸是一项极具挑战性的计算机视觉任务。为了解决这个问题,我们提出了一种新颖的从粗到细的自监督学习框架,用于从野外单目图像中重建细粒度三维人脸。在粗粒度阶段,从单张图像中提取的人脸参数被用于通过 3DMM 重建粗粒度 3D 人脸。在细化阶段,我们设计了一个小波变换感知模型,从输入图像中提取不同频域的面部细节。此外,我们还提出了一个基于小波变换感知模型的深度位移模块,从输入图像和渲染后的粗略人脸的未包裹 UV 纹理中生成精细的位移图,用于合成详细的三维人脸几何图形。此外,我们还提出了基于小波变换感知模型的新型反照率图模块,用于捕捉高频纹理信息并生成与人脸光照一致的详细反照率图。详细的人脸几何图形和反照率图用于在没有任何标记数据的情况下重建精细的三维人脸。我们在 CelebA、LS3D、LFW 和 NoW 基准等四个公共数据集上进行了大量实验,证明我们的方法优于现有的最先进的三维人脸重建方法。实验结果表明,我们的方法实现了更高的准确性和鲁棒性,尤其是在遮挡、大姿势和不同光照等具有挑战性的条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1