Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-08-06 DOI:10.1007/s10971-024-06499-2
Linheng Ge, Hong Zhang, Zirui Wang, Qingli Gao, Manman Ren, Xiaoxia Cai, Qinze Liu, Weiliang Liu, Jinshui Yao
{"title":"Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery","authors":"Linheng Ge,&nbsp;Hong Zhang,&nbsp;Zirui Wang,&nbsp;Qingli Gao,&nbsp;Manman Ren,&nbsp;Xiaoxia Cai,&nbsp;Qinze Liu,&nbsp;Weiliang Liu,&nbsp;Jinshui Yao","doi":"10.1007/s10971-024-06499-2","DOIUrl":null,"url":null,"abstract":"<div><p>Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn<sup>2+</sup> into the prepared manganese tetroxide (Mn<sub>3</sub>O<sub>4</sub>)/graphene oxide (GO). The pre-intercalation of Zn<sup>2+</sup> effectively increases the lattice spacing of Mn<sub>3</sub>O<sub>4</sub> and reduces the barrier of insertion/extraction of Zn<sup>2+</sup>, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn<sub>3</sub>O<sub>4</sub>, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup>). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10<sup>−9</sup>–10<sup>−10</sup>cm<sup>−2</sup> s<sup>−1</sup>. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06499-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its abundant zinc resources, high safety and low cost, aqueous zinc-ion batteries (AZIBs) are considered one of the most interesting lithium-ion battery replacement technologies. Herein, a novel Zn-doped cathode material is achieved via pre-intercalation of Zn2+ into the prepared manganese tetroxide (Mn3O4)/graphene oxide (GO). The pre-intercalation of Zn2+ effectively increases the lattice spacing of Mn3O4 and reduces the barrier of insertion/extraction of Zn2+, thus improving the kinetic properties of the material. Meanwhile, the conductive carbon skeleton GO successfully combines with polyethyleneimine and Mn3O4, which can expand electron and ion conductivity and avoid chemical bulk change. This unique structure enables the Zn-doped cathode a reversible specific capacity with excellent performance (170 mAh g−1 at 200 mA g−1). Furthermore, the diffusion coefficient of the Zn-doped cathode is 10−9–10−10cm−2 s−1. Therefore, this study introduces a viable approach for the practical implementation of advanced electrode materials in AZIBs applications.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能水性锌离子电池的掺锌四氧化三锰/氧化石墨烯阴极材料
由于锌资源丰富、安全性高且成本低,锌离子水电池(AZIBs)被认为是最有趣的锂离子电池替代技术之一。本文通过在制备的四氧化三锰(Mn3O4)/氧化石墨烯(GO)中预掺杂 Zn2+ 实现了一种新型掺锌正极材料。Zn2+ 的预掺杂有效地增加了 Mn3O4 的晶格间距,降低了 Zn2+ 的插入/萃取障碍,从而改善了材料的动力学特性。同时,导电碳骨架 GO 成功地与聚乙烯亚胺和 Mn3O4 结合在一起,扩大了电子和离子的导电性,避免了化学块体变化。这种独特的结构使掺锌阴极具有可逆的比容量和优异的性能(200 mA g-1 时为 170 mAh g-1)。此外,掺锌阴极的扩散系数为 10-9-10-10cm-2 s-1。因此,这项研究为先进电极材料在 AZIBs 应用中的实际应用引入了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Phase structure evolution and electric properties of PSN-PIN-PT ferroelectric ceramics near MPB The impact of aluminum oxide deposition on the high-temperature resistance of silica aerogels Investigating structural, dielectric, and electrical characteristics of sol–gel synthesized perovskite ceramic Bi0.7Ba0.3(FeTi)0.5O3 Quasi-in-situ characterization and laser damage investigation of flaws in silica antireflection coatings Effect of synthesis time on the photocatalytic performance of aggregated CuBO₂ microstructures for photo induced hazardous dye removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1