{"title":"An experimental analysis and deep learning model to assess the cooling performance of green walls in humid climates","authors":"Abdollah Baghaei Daemei, Tomasz Bradecki, Alina Pancewicz, Amirali Razzaghipour, Asma Jamali, Seyedeh Maryam Abbaszadegan, Reza Askarizad, Mostafa Kazemi, Ayyoob Sharifi","doi":"10.3389/fenrg.2024.1447655","DOIUrl":null,"url":null,"abstract":"Introduction: Amidst escalating global temperatures, increasing climate change, and rapid urbanization, addressing urban heat islands and improving outdoor thermal comfort is paramount for sustainable urban development. Green walls offer a promising strategy by effectively lowering ambient air temperatures in urban environments. While previous studies have explored their impact in various climates, their effectiveness in humid climates remains underexplored.Methods: This research investigates the cooling effect of a green wall during summer in a humid climate, employing two approaches: Field Measurement-Based Analysis (SC 1: FMA) and Deep Learning Model (SC 2: DLM). In SC 1: FMA, experiments utilized data loggers at varying distances from the green wall to capture real-time conditions. SC 2: DLM utilized a deep learning model to predict the green wall’s performance over time.Results: Results indicate a significant reduction in air temperature, with a 1.5°C (6%) decrease compared to real-time conditions. Long-term analysis identified specific distances (A, B, C, and D) contributing to temperature reductions ranging from 1.5°C to 2.5°C, highlighting optimal distances for green wall efficacy.Discussion: This study contributes novel insights by determining effective distances for green wall systems to mitigate ambient temperatures, addressing a critical gap in current literature. The integration of a deep learning model enhances analytical precision and forecasts future outcomes. Despite limitations related to a single case study and limited timeframe, this research offers practical benefits in urban heat island mitigation, enhancing outdoor comfort, and fostering sustainable and climate-resilient urban environments.","PeriodicalId":12428,"journal":{"name":"Frontiers in Energy Research","volume":"76 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1447655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Amidst escalating global temperatures, increasing climate change, and rapid urbanization, addressing urban heat islands and improving outdoor thermal comfort is paramount for sustainable urban development. Green walls offer a promising strategy by effectively lowering ambient air temperatures in urban environments. While previous studies have explored their impact in various climates, their effectiveness in humid climates remains underexplored.Methods: This research investigates the cooling effect of a green wall during summer in a humid climate, employing two approaches: Field Measurement-Based Analysis (SC 1: FMA) and Deep Learning Model (SC 2: DLM). In SC 1: FMA, experiments utilized data loggers at varying distances from the green wall to capture real-time conditions. SC 2: DLM utilized a deep learning model to predict the green wall’s performance over time.Results: Results indicate a significant reduction in air temperature, with a 1.5°C (6%) decrease compared to real-time conditions. Long-term analysis identified specific distances (A, B, C, and D) contributing to temperature reductions ranging from 1.5°C to 2.5°C, highlighting optimal distances for green wall efficacy.Discussion: This study contributes novel insights by determining effective distances for green wall systems to mitigate ambient temperatures, addressing a critical gap in current literature. The integration of a deep learning model enhances analytical precision and forecasts future outcomes. Despite limitations related to a single case study and limited timeframe, this research offers practical benefits in urban heat island mitigation, enhancing outdoor comfort, and fostering sustainable and climate-resilient urban environments.
期刊介绍:
Frontiers in Energy Research makes use of the unique Frontiers platform for open-access publishing and research networking for scientists, which provides an equal opportunity to seek, share and create knowledge. The mission of Frontiers is to place publishing back in the hands of working scientists and to promote an interactive, fair, and efficient review process. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria