Log-Gaussian Cox Processes for Spatiotemporal Traffic Fatality Estimation in Addis Ababa

Yassin Tesfaw Abebe, Abdu Mohammed Seid, Lassi Roininen
{"title":"Log-Gaussian Cox Processes for Spatiotemporal Traffic Fatality Estimation in Addis Ababa","authors":"Yassin Tesfaw Abebe, Abdu Mohammed Seid, Lassi Roininen","doi":"arxiv-2408.02612","DOIUrl":null,"url":null,"abstract":"We investigate the spatiotemporal dynamics of traffic accidents in Addis\nAbaba, Ethiopia, using 2016--2019 data. We formulate the traffic accident\nintensity as a log-Gaussian Cox Process and model it as a spatiotemporal point\nprocess with and without fixed and random effect components that incorporate\npossible covariates and spatial correlation information. The covariate includes\npopulation density and distance of accident locations from schools, from\nmarkets, from bus stops and from worship places. We estimate the posterior of\nthe state variables using integrated nested Laplace approximations with\nstochastic partial differential equations approach by considering Mat\\`ern\nprior. Deviance and Watanabe - Akaike information criteria are used to check\nthe performance of the models. We implement the methodology to map traffic\naccident intensity over Addis Ababa entirely and on its road networks and\nvisualize the potential traffic accident hotspot areas. The comparison of the\nobservation with the model output reveals that the covariates considered has\nsignificant effect for the accident intensity. Moreover, the information\ncriteria results reveal the model with covariate performs well compared with\nthe model without covariates. We obtained temporal correlation of the\nlog-intensity as 0.78 indicating the existence of similar traffic fatality\ntrend in space during the study period.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the spatiotemporal dynamics of traffic accidents in Addis Ababa, Ethiopia, using 2016--2019 data. We formulate the traffic accident intensity as a log-Gaussian Cox Process and model it as a spatiotemporal point process with and without fixed and random effect components that incorporate possible covariates and spatial correlation information. The covariate includes population density and distance of accident locations from schools, from markets, from bus stops and from worship places. We estimate the posterior of the state variables using integrated nested Laplace approximations with stochastic partial differential equations approach by considering Mat\`ern prior. Deviance and Watanabe - Akaike information criteria are used to check the performance of the models. We implement the methodology to map traffic accident intensity over Addis Ababa entirely and on its road networks and visualize the potential traffic accident hotspot areas. The comparison of the observation with the model output reveals that the covariates considered has significant effect for the accident intensity. Moreover, the information criteria results reveal the model with covariate performs well compared with the model without covariates. We obtained temporal correlation of the log-intensity as 0.78 indicating the existence of similar traffic fatality trend in space during the study period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于估计亚的斯亚贝巴时空交通事故死亡率的对数高斯考克斯过程
我们利用 2016-2019 年的数据研究了埃塞俄比亚亚的斯亚贝巴交通事故的时空动态。我们将交通事故强度表述为一个对数高斯 Cox 过程,并将其建模为一个时空点过程,其中包含和不包含固定和随机效应成分,这些成分包含了可能的协变量和空间相关信息。协变量包括人口密度以及事故地点与学校、市场、公交车站和宗教场所的距离。我们使用集成嵌套拉普拉斯近似法和随机偏微分方程法估计状态变量的后验值,并考虑了Mat/ernprior。使用偏差和渡边-赤池信息标准来检验模型的性能。我们采用该方法绘制了亚的斯亚贝巴全境及其道路网络的交通事故强度图,并显示了潜在的交通事故热点区域。将观测结果与模型输出结果进行比较后发现,所考虑的协变量对事故强度有显著影响。此外,信息标准结果表明,与不考虑协变量的模型相比,考虑了协变量的模型表现良好。我们得到的事故强度日志的时间相关性为 0.78,表明在研究期间存在空间上相似的交通死亡趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1