J. McClenaghan, C. Akçay, T. B. Amara, X. Sun, S. Madireddy, L. L. Lao, S. E. Kruger, O. M. Meneghini
{"title":"Augmenting machine learning of Grad–Shafranov equilibrium reconstruction with Green's functions","authors":"J. McClenaghan, C. Akçay, T. B. Amara, X. Sun, S. Madireddy, L. L. Lao, S. E. Kruger, O. M. Meneghini","doi":"10.1063/5.0213625","DOIUrl":null,"url":null,"abstract":"This work presents a method for predicting plasma equilibria in tokamak fusion experiments and reactors. The approach involves representing the plasma current as a linear combination of basis functions using principal component analysis of plasma toroidal current densities (Jt) from the EFIT-AI equilibrium database. Then utilizing EFIT's Green's function tables, basis functions are created for the poloidal flux (ψ) and diagnostics generated from the toroidal current (Jt). Similar to the idea of a physics-informed neural network (NN), this physically enforces consistency between ψ, Jt, and the synthetic diagnostics. First, the predictive capability of a least squares technique to minimize the error on the synthetic diagnostics is employed. The results show that the method achieves high accuracy in predicting ψ and moderate accuracy in predicting Jt with median R2 = 0.9993 and R2 = 0.978, respectively. A comprehensive NN using a network architecture search is also employed to predict the coefficients of the basis functions. The NN demonstrates significantly better performance compared to the least squares method with median R2 = 0.9997 and 0.9916 for Jt and ψ, respectively. The robustness of the method is evaluated by handling missing or incorrect data through the least squares filling of missing data, which shows that the NN prediction remains strong even with a reduced number of diagnostics. Additionally, the method is tested on plasmas outside of the training range showing reasonable results.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"53 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0213625","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a method for predicting plasma equilibria in tokamak fusion experiments and reactors. The approach involves representing the plasma current as a linear combination of basis functions using principal component analysis of plasma toroidal current densities (Jt) from the EFIT-AI equilibrium database. Then utilizing EFIT's Green's function tables, basis functions are created for the poloidal flux (ψ) and diagnostics generated from the toroidal current (Jt). Similar to the idea of a physics-informed neural network (NN), this physically enforces consistency between ψ, Jt, and the synthetic diagnostics. First, the predictive capability of a least squares technique to minimize the error on the synthetic diagnostics is employed. The results show that the method achieves high accuracy in predicting ψ and moderate accuracy in predicting Jt with median R2 = 0.9993 and R2 = 0.978, respectively. A comprehensive NN using a network architecture search is also employed to predict the coefficients of the basis functions. The NN demonstrates significantly better performance compared to the least squares method with median R2 = 0.9997 and 0.9916 for Jt and ψ, respectively. The robustness of the method is evaluated by handling missing or incorrect data through the least squares filling of missing data, which shows that the NN prediction remains strong even with a reduced number of diagnostics. Additionally, the method is tested on plasmas outside of the training range showing reasonable results.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas