S. Goodarzi, I. Sagert, J. P. Sauppe, P. A. Keiter, E. N. Loomis, R. F. Sacks, Z. L. Mohamed, S. Palaniyappan, E. C. Merritt, B. M. Haines, B. M. Patterson, D. D. Meyerhofer, D. S. Montgomery, D. W. Schmidt
{"title":"Characterizing the effects of drive asymmetries, component offsets, and joint gaps in double shell capsule implosions","authors":"S. Goodarzi, I. Sagert, J. P. Sauppe, P. A. Keiter, E. N. Loomis, R. F. Sacks, Z. L. Mohamed, S. Palaniyappan, E. C. Merritt, B. M. Haines, B. M. Patterson, D. D. Meyerhofer, D. S. Montgomery, D. W. Schmidt","doi":"10.1063/5.0195454","DOIUrl":null,"url":null,"abstract":"This work provides a numerical study of how double shell capsule deformations caused by drive asymmetries and fabrication imperfections affect implosion symmetry and neutron yield. Hydrodynamics simulations are performed in two dimensions and focus on low-mode deformations that are caused by corresponding asymmetries in the Hohlraum drive, component offsets, and ablator joint gaps. By providing a parameter study of these features, our goal is to understand the dominant sources for inner shell deformation and yield degradation. The discussed capsules are composed of an aluminum ablator with a chromium inner shell. The latter encloses a carbon-deuterium foam ball that serves as fuel. We find that for clean capsules, even-numbered low-mode asymmetries in the drive are imprinted on the ablator and smoothly transferred to the inner shell during shell collision. The resulting deformation of the inner shell is more pronounced with larger fuel radius, while the yield is inversely proportional to the amplitude of the drive asymmetry and varies by factors ≤4 in comparison with clean simulations. Capsule component offsets in the vertical direction and ablator thickness nonuniformity result in p1-type deformations of the imploding inner shell. Finally, joint gaps have the largest effect in deforming the ablator and inner shell and degrading yield. While small gap widths (1 μm) result in prolate inner shells, larger gap widths (4 μm) cause an oblate deformation. More importantly, capsules with a small outer gap (1 μm) experience a dramatic drop in yield, typically <3% of a clean simulation.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"23 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0195454","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This work provides a numerical study of how double shell capsule deformations caused by drive asymmetries and fabrication imperfections affect implosion symmetry and neutron yield. Hydrodynamics simulations are performed in two dimensions and focus on low-mode deformations that are caused by corresponding asymmetries in the Hohlraum drive, component offsets, and ablator joint gaps. By providing a parameter study of these features, our goal is to understand the dominant sources for inner shell deformation and yield degradation. The discussed capsules are composed of an aluminum ablator with a chromium inner shell. The latter encloses a carbon-deuterium foam ball that serves as fuel. We find that for clean capsules, even-numbered low-mode asymmetries in the drive are imprinted on the ablator and smoothly transferred to the inner shell during shell collision. The resulting deformation of the inner shell is more pronounced with larger fuel radius, while the yield is inversely proportional to the amplitude of the drive asymmetry and varies by factors ≤4 in comparison with clean simulations. Capsule component offsets in the vertical direction and ablator thickness nonuniformity result in p1-type deformations of the imploding inner shell. Finally, joint gaps have the largest effect in deforming the ablator and inner shell and degrading yield. While small gap widths (1 μm) result in prolate inner shells, larger gap widths (4 μm) cause an oblate deformation. More importantly, capsules with a small outer gap (1 μm) experience a dramatic drop in yield, typically <3% of a clean simulation.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas