Study on microstructure and mechanical properties of 5052 aluminum alloy MIG welded joint for high-speed train

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Express Pub Date : 2024-08-11 DOI:10.1088/2053-1591/ad6b01
Shuang Liu, Zhanqi Liu, Haijiang Wang, Jianhui Liang and Xiaoou Zhu
{"title":"Study on microstructure and mechanical properties of 5052 aluminum alloy MIG welded joint for high-speed train","authors":"Shuang Liu, Zhanqi Liu, Haijiang Wang, Jianhui Liang and Xiaoou Zhu","doi":"10.1088/2053-1591/ad6b01","DOIUrl":null,"url":null,"abstract":"In this paper, the MIG welding process is utilized to weld a 3 mm thick 5052 aluminum alloy plate by using ER5356 welding wire as filler. The effects of different welding speeds on the microstructure and mechanical properties of the weld are systematically studied utilizing a metallographic microscope, x-ray diffractometer, scanning electron microscope, room temperature tensile, and microhardness. It was found that there were pore defects in the samples at lower or higher welding speeds, and there was no penetration at the maximum welding speed. When the welding speed is 650 mm min−1, the weld is well-formed, the surface is flat without pores, the fish scale is evenly distributed, and the weld shows good penetration. The intermetallic compounds of all the welds are mainly composed of α(Al), Mg2Si, Al3Fe, and Al3Mg2. The mechanical properties of the samples show that the hardness of the weld reaches the maximum value of 56.7HV at this welding speed, and the tensile strength and elongation are 210 MPa and 14.3%, respectively. The fracture is located at the junction of the base metal and the heat-affected zone, and the fracture type showed typical ductile fracture.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"47 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad6b01","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the MIG welding process is utilized to weld a 3 mm thick 5052 aluminum alloy plate by using ER5356 welding wire as filler. The effects of different welding speeds on the microstructure and mechanical properties of the weld are systematically studied utilizing a metallographic microscope, x-ray diffractometer, scanning electron microscope, room temperature tensile, and microhardness. It was found that there were pore defects in the samples at lower or higher welding speeds, and there was no penetration at the maximum welding speed. When the welding speed is 650 mm min−1, the weld is well-formed, the surface is flat without pores, the fish scale is evenly distributed, and the weld shows good penetration. The intermetallic compounds of all the welds are mainly composed of α(Al), Mg2Si, Al3Fe, and Al3Mg2. The mechanical properties of the samples show that the hardness of the weld reaches the maximum value of 56.7HV at this welding speed, and the tensile strength and elongation are 210 MPa and 14.3%, respectively. The fracture is located at the junction of the base metal and the heat-affected zone, and the fracture type showed typical ductile fracture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高速列车的 5052 铝合金 MIG 焊接接头的微观结构和机械性能研究
本文采用 MIG 焊接工艺,以 ER5356 焊丝为填充物,焊接 3 毫米厚的 5052 铝合金板。利用金相显微镜、X 射线衍射仪、扫描电子显微镜、室温拉伸和显微硬度系统地研究了不同焊接速度对焊缝微观结构和机械性能的影响。结果发现,在较低或较高的焊接速度下,样品中存在孔隙缺陷,而在最高焊接速度下则没有渗透。当焊接速度为 650 mm min-1 时,焊缝成形良好,表面平整无气孔,鱼鳞状分布均匀,焊缝渗透性良好。所有焊缝的金属间化合物主要由 α(Al)、Mg2Si、Al3Fe 和 Al3Mg2 组成。试样的机械性能表明,在此焊接速度下,焊缝的硬度达到最大值 56.7HV,抗拉强度和伸长率分别为 210 MPa 和 14.3%。断口位于母材和热影响区的交界处,断口类型为典型的韧性断口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
期刊最新文献
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1