A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Express Pub Date : 2024-09-17 DOI:10.1088/2053-1591/ad7921
M Mujahid
{"title":"A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion","authors":"M Mujahid","doi":"10.1088/2053-1591/ad7921","DOIUrl":null,"url":null,"abstract":"This study used a hydrothermal approach to synthesis carbon dots (CDs) from apricot peel, which were then used as a probe for the selective and sensitive detection of Cd2+ ions. The synthesized CDs’ surface groupings, structure, shape, biological nature, and overall size were examined using standard characterization techniques. With a quantum yield of 22.1%, these CDs showed excitation-dependent fluorescence emission. In addition, Cd2+ ions were distinguished from other metal ions by a noticeable drop in fluorescence intensity. The fluorescence probe showed a linear response ranging from 0–300 μM and a detection threshold (DT) of 0.21 μM, indicating its effectiveness for Cd2+ detection. Furthermore, the CDs demonstrated the practical application by detecting Cd2+ ion in actual water samples.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad7921","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study used a hydrothermal approach to synthesis carbon dots (CDs) from apricot peel, which were then used as a probe for the selective and sensitive detection of Cd2+ ions. The synthesized CDs’ surface groupings, structure, shape, biological nature, and overall size were examined using standard characterization techniques. With a quantum yield of 22.1%, these CDs showed excitation-dependent fluorescence emission. In addition, Cd2+ ions were distinguished from other metal ions by a noticeable drop in fluorescence intensity. The fluorescence probe showed a linear response ranging from 0–300 μM and a detection threshold (DT) of 0.21 μM, indicating its effectiveness for Cd2+ detection. Furthermore, the CDs demonstrated the practical application by detecting Cd2+ ion in actual water samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从杨梅中简单绿色合成碳量子点并将其用作选择性灵敏检测 Cd2+ 金属离子的荧光探针
本研究采用水热法从杏皮中合成了碳点(CD),然后将其用作探针,对 Cd2+ 离子进行选择性灵敏检测。利用标准表征技术考察了合成碳点的表面基团、结构、形状、生物性质和整体尺寸。这些光盘的量子产率为 22.1%,显示出与激发相关的荧光发射。此外,Cd2+ 离子与其他金属离子的荧光强度明显降低,从而被区分开来。该荧光探针的线性响应范围为 0-300 μM,检测阈值(DT)为 0.21 μM,表明其在 Cd2+ 检测方面非常有效。此外,CD 通过检测实际水样中的 Cd2+ 离子证明了其实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
期刊最新文献
Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion Growth, magnetic, and electronic properties of Ni-Zn ferrites thin films Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1