Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-08-07 DOI:10.1016/j.cej.2024.154634
Neema Cyril Karima , Song Jin , Sung Mook Choi , Kelvin Jenerali Nyamtara , Paul Maldonado Nogales , Manh Cuong Nguyen , Sung Hoon Kim , Sung Nam Lim , Soon-Ki Jeong , Hyun-Kyung Kim , Min Ho Seo , Wook Ahn
{"title":"Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries","authors":"Neema Cyril Karima ,&nbsp;Song Jin ,&nbsp;Sung Mook Choi ,&nbsp;Kelvin Jenerali Nyamtara ,&nbsp;Paul Maldonado Nogales ,&nbsp;Manh Cuong Nguyen ,&nbsp;Sung Hoon Kim ,&nbsp;Sung Nam Lim ,&nbsp;Soon-Ki Jeong ,&nbsp;Hyun-Kyung Kim ,&nbsp;Min Ho Seo ,&nbsp;Wook Ahn","doi":"10.1016/j.cej.2024.154634","DOIUrl":null,"url":null,"abstract":"<div><p>Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg<sup>−1</sup>. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg<sup>−1</sup> at 200 mAg<sup>−1</sup> current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"497 ","pages":"Article 154634"},"PeriodicalIF":13.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724061254","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Within the ever-growing family of lithium batteries, lithium–sulfur batteries (LSB) have gained significant commercial concern owing to the impressive specific theoretical capacity of 1675 mAhg−1. Despite possessing a higher theoretical specific capacity, lithium-sulfur batteries (LSBs) face practical challenges due to the mobility of dissolved polysulfide intermediates, shuttle effect and the insulating properties of sulfur. These factors result in limited utilization of active material and rapid capacity deterioration. To minimize these problems, we designed a sponge cobalt wrapped in reduced graphene oxide (rGO) cathode material to enable effective polysulfide immobilization. The sponge cobalt nanoparticles from the ZIF 67 metal organic framework wrapped in rGO nanosheets increase the amount of space inside the carbon sponge; thus, has the significance for containing large amount of sulfur. The high affinity of cobalt for lithium polysulfide enabled robust lithium polysulfide adsorption against shuttling effects. The bonding between the cobalt and carbon functional groups captures lithium polysulfides on the composite surface, preventing their dissolution in the electrolyte. The cohabitation of sulfur and cobalt on rGO accelerated electron transfer rate for the transformation of sulfur, leading to efficient suppression of shuttle effect and steady sulfur electrochemistry. The sponge sulfur-infiltrated cobalt nanoparticles into rGO sheets exhibit a discharge capacity of 1176 mAhg−1 at 200 mAg−1 current density with cycling stability and retention capacity rate of 91 % for more than 140 cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOF 衍生的钴/rGO 复合材料与硫之间的相互作用机制,促进锂硫电池的长循环寿命
在不断发展的锂电池家族中,锂硫电池(LSB)因其 1675 mAhg 的惊人理论比容量而备受商业关注。尽管锂硫电池(LSB)具有更高的理论比容量,但由于溶解的多硫化物中间体的流动性、穿梭效应和硫的绝缘特性,锂硫电池(LSB)面临着实际挑战。这些因素导致活性材料的利用率有限,容量迅速下降。为了尽量减少这些问题,我们设计了一种包裹在还原氧化石墨烯(rGO)阴极材料中的海绵钴,以实现有效的多硫固定。来自 ZIF 67 金属有机框架的海绵钴纳米粒子包裹在 rGO 纳米片中,增加了碳海绵内部的空间,因此对含有大量硫具有重要意义。钴对多硫化锂的高亲和力使得多硫化锂的吸附性很强,不会产生穿梭效应。钴和碳官能团之间的结合可将多硫化锂吸附在复合材料表面,防止其溶解在电解液中。硫和钴在 rGO 上的共生加速了硫转化的电子传递速率,从而有效抑制了穿梭效应,实现了稳定的硫电化学。将钴纳米粒子渗入 rGO 片材的海绵硫在 200 mAg 电流密度下的放电容量为 1176 mAhg,且循环稳定,容量保持率高达 91%,循环次数超过 140 次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
A novel silkworm excrement-derived nanomedicine integrating ferroptosis and photodynamic therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Manganese halides with timely and delayed reversible thermal fluorescence quenching for dual-secure information encryption and Anti-Counterfeiting Boron, nitrogen co-doped biomass-derived multilayer-graphene encapsulated Co nanoparticles as highly efficient catalysts for the selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran Advances in bi-reforming of methane: Syngas production for low-carbon energy solutions Polyvalent bacteriophages conjugated with ROS-scavenging nanozymes enhance antibiotic-resistant biofilm disruption and anti-inflammatory therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1