The minimal computational substrate of fluid intelligence

IF 3.2 2区 心理学 Q1 BEHAVIORAL SCIENCES Cortex Pub Date : 2024-08-03 DOI:10.1016/j.cortex.2024.07.003
Amy P.K. Nelson , Joe Mole , Guilherme Pombo , Robert J. Gray , James K. Ruffle , Edgar Chan , Geraint E. Rees , Lisa Cipolotti , Parashkev Nachev
{"title":"The minimal computational substrate of fluid intelligence","authors":"Amy P.K. Nelson ,&nbsp;Joe Mole ,&nbsp;Guilherme Pombo ,&nbsp;Robert J. Gray ,&nbsp;James K. Ruffle ,&nbsp;Edgar Chan ,&nbsp;Geraint E. Rees ,&nbsp;Lisa Cipolotti ,&nbsp;Parashkev Nachev","doi":"10.1016/j.cortex.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The quantification of cognitive powers rests on identifying a behavioural task that depends on them. Such dependence cannot be assured, for the powers a task invokes cannot be experimentally controlled or constrained <em>a priori</em>, resulting in unknown vulnerability to failure of specificity and generalisability. Evaluating a compact version of Raven's Advanced Progressive Matrices (RAPM), a widely used clinical test of fluid intelligence, we show that LaMa, a self-supervised artificial neural network trained solely on the completion of partially masked images of natural environmental scenes, achieves representative human-level test scores <em>a prima vista</em>, without any task-specific inductive bias or training. Compared with cohorts of healthy and focally lesioned participants, LaMa exhibits human-like variation with item difficulty, and produces errors characteristic of right frontal lobe damage under degradation of its ability to integrate global spatial patterns. LaMa's narrow training and limited capacity suggest matrix-style tests may be open to computationally simple solutions that need not necessarily invoke the substrates of reasoning.</p></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"179 ","pages":"Pages 62-76"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010945224002053/pdfft?md5=963e22a643d99516c9e719d3767911f9&pid=1-s2.0-S0010945224002053-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945224002053","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The quantification of cognitive powers rests on identifying a behavioural task that depends on them. Such dependence cannot be assured, for the powers a task invokes cannot be experimentally controlled or constrained a priori, resulting in unknown vulnerability to failure of specificity and generalisability. Evaluating a compact version of Raven's Advanced Progressive Matrices (RAPM), a widely used clinical test of fluid intelligence, we show that LaMa, a self-supervised artificial neural network trained solely on the completion of partially masked images of natural environmental scenes, achieves representative human-level test scores a prima vista, without any task-specific inductive bias or training. Compared with cohorts of healthy and focally lesioned participants, LaMa exhibits human-like variation with item difficulty, and produces errors characteristic of right frontal lobe damage under degradation of its ability to integrate global spatial patterns. LaMa's narrow training and limited capacity suggest matrix-style tests may be open to computationally simple solutions that need not necessarily invoke the substrates of reasoning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体智能的最小计算基底
认知能力的量化取决于确定一项依赖于认知能力的行为任务。这种依赖性是无法保证的,因为一项任务所调用的能力无法通过实验加以控制或约束,从而导致特异性和概括性的失败。通过评估瑞文高级渐进矩阵(Raven's Advanced Progressive Matrices,RAPM)的精简版(RAPM是一种广泛应用于临床的流体智力测试),我们发现LaMa是一种自我监督的人工神经网络,它仅通过完成自然环境场景的部分遮蔽图像进行训练,在没有任何特定任务的归纳偏差或训练的情况下获得了具有代表性的人类水平的测试分数。与健康和局部病变的参与者相比,LaMa 在项目难度上表现出与人类类似的变化,并在整合全局空间模式的能力下降的情况下,产生了右额叶损伤所特有的错误。LaMa的训练范围窄、能力有限,这表明矩阵式测试可以采用计算简单的解决方案,而不一定需要调用推理的基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cortex
Cortex 医学-行为科学
CiteScore
7.00
自引率
5.60%
发文量
250
审稿时长
74 days
期刊介绍: CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.
期刊最新文献
Oral applause sign in progressive supranuclear palsy. Lateral peri-hand bias affects the horizontal but not the vertical distribution of attention. Age-based stereotype threat effects: From the laboratory to the clinical setting. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Does the stop-signal P3 reflect inhibitory control?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1