Livestock feeding behaviour: A review on automated systems for ruminant monitoring

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-08-09 DOI:10.1016/j.biosystemseng.2024.08.003
José O. Chelotti , Luciano S. Martinez-Rau , Mariano Ferrero , Leandro D. Vignolo , Julio R. Galli , Alejandra M. Planisich , H. Leonardo Rufiner , Leonardo L. Giovanini
{"title":"Livestock feeding behaviour: A review on automated systems for ruminant monitoring","authors":"José O. Chelotti ,&nbsp;Luciano S. Martinez-Rau ,&nbsp;Mariano Ferrero ,&nbsp;Leandro D. Vignolo ,&nbsp;Julio R. Galli ,&nbsp;Alejandra M. Planisich ,&nbsp;H. Leonardo Rufiner ,&nbsp;Leonardo L. Giovanini","doi":"10.1016/j.biosystemseng.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of existing methods is a complex task and direct comparison<del>s</del> between studies is difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. This review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potential of the valuable information provided by automated monitoring systems to expand knowledge in the field, positively impacting production systems and research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding behaviour monitoring.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"246 ","pages":"Pages 150-177"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1537511024001752/pdfft?md5=25feb883db3b759a18105dcf9e605f35&pid=1-s2.0-S1537511024001752-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001752","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of existing methods is a complex task and direct comparisons between studies is difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. This review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potential of the valuable information provided by automated monitoring systems to expand knowledge in the field, positively impacting production systems and research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding behaviour monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牲畜采食行为:反刍动物自动监测系统综述
牲畜采食行为是畜牧业和农业中一个有影响力的研究领域。近年来,人们对反刍动物行为自动监测系统的兴趣与日俱增。目前的自动监测系统主要使用运动、声学、压力和图像传感器来收集和分析与摄食行为、觅食活动和每日摄入量有关的模式。对现有方法进行性能评估是一项复杂的任务,很难对不同研究进行直接比较。从实验中使用的数据和性能指标的多样性开始,有几个因素阻碍了直接比较。这篇反刍动物采食行为分析综述强调了传感方法、信号处理和计算智能方法之间的关系。它评估了与采食行为相关的主要传感方法和主要信号分析技术,评价了它们在不同环境和情况下的应用。论文还强调了自动监测系统提供的宝贵信息在拓展该领域知识、对生产系统和研究产生积极影响方面的潜力。论文最后讨论了牲畜采食行为监测领域未来的工程挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Optimisation design and experimental analysis of rotary blade reinforcing ribs using DEM-FEM techniques Guidelines for mechanical weeding: Developing weed control lines through point extraction at maize root zones Evaluation of water distribution and uniformity of sprinkler irrigation based on harmonic analysis and finite element method A vibration-based machine learning approach for roller gap detection in biomass pellet production Relative contributions of respiration and transpiration to the weight loss of russet-type potatoes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1