{"title":"Evaluation on different volume of fluid methods in unstructured solver under the optimized condition","authors":"Takuya Yamamoto , Sergey V. Komarov","doi":"10.1016/j.euromechflu.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><p>We compared the accuracy of volume of fluid (VOF) methods in unstructured solvers using the following five different methods: 1 - the algebraically compressive VOF method, 2 – simple coupled VOF method with Level Set (S-CLSVOF) method, 3 - interface-compressing VOF method incorporated with Laplacian filter (VOFL), 4 - isoAdvector method, and 5 - isoAdvector method incorporated with Laplacian filter (isoAdvectorL) by incorporating them into OpenFOAM®, an open-source software. To evaluate these methods under proper conditions, we compared the calculation accuracy using the optimized parameters, which are explored by Bayesian optimization. The test cases for advection accuracy of volume fraction and for imbalance of surface tension force in static multiphase fluid fields were considered. In this study, we found that the compression parameters and maximum Courant number should be adjusted to obtain high accuracy simulation according to the simulation condition in VOF and S-CLSVOF method. In VOFL and isoAdvectorL methods, the spurious current can be extremely reduced, which means that these methods are suitable for slow flow with higher Laplace number conditions.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 187-210"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We compared the accuracy of volume of fluid (VOF) methods in unstructured solvers using the following five different methods: 1 - the algebraically compressive VOF method, 2 – simple coupled VOF method with Level Set (S-CLSVOF) method, 3 - interface-compressing VOF method incorporated with Laplacian filter (VOFL), 4 - isoAdvector method, and 5 - isoAdvector method incorporated with Laplacian filter (isoAdvectorL) by incorporating them into OpenFOAM®, an open-source software. To evaluate these methods under proper conditions, we compared the calculation accuracy using the optimized parameters, which are explored by Bayesian optimization. The test cases for advection accuracy of volume fraction and for imbalance of surface tension force in static multiphase fluid fields were considered. In this study, we found that the compression parameters and maximum Courant number should be adjusted to obtain high accuracy simulation according to the simulation condition in VOF and S-CLSVOF method. In VOFL and isoAdvectorL methods, the spurious current can be extremely reduced, which means that these methods are suitable for slow flow with higher Laplace number conditions.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.