Farinaz Jonidi Shariatzadeh , Sarah Currie , Sarvesh Logsetty , Rae Spiwak , Song Liu
{"title":"Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings","authors":"Farinaz Jonidi Shariatzadeh , Sarah Currie , Sarvesh Logsetty , Rae Spiwak , Song Liu","doi":"10.1016/j.pmatsci.2024.101350","DOIUrl":null,"url":null,"abstract":"<div><p>Wound healing is a complex biological process that, when impaired, can lead to the formation of scars. Electrospun nanofibrous wound dressings have emerged as a promising option for promoting scar-free wound healing. This paper explores the complex role of physical, compositional, and chemical cues, each contributing to the remarkable healing potential of these wound dressings. The physical properties of these dressings, such as porosity and mechanical characteristics, can guide cellular behaviors and promote vascularization, fostering a conducive environment for reduced scarring. Furthermore, the integration of natural polymers that mimic the skin’s extracellular matrix, known as compositional cues, adds another layer of complexity to these wound dressings. As chemical cues, therapeutic agents have demonstrated their potential to combat chronic wound scenarios leading to scar formation. However, achieving the desired therapeutic effect hinges on the nature of these agents and their controlled release. Therefore, the paper also delves into various loading techniques for tailoring the release profiles of these bioactive agents. Although electrospun nanofibrous wound dressings are promising as wound dressings, a viable commercial product remains elusive. This gap can be attributed to a lack of comprehensive <em>in vivo</em> studies, particularly in animal models that mimic human wound healing.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101350"},"PeriodicalIF":33.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001191/pdfft?md5=a8d574197e5e282bb6648e0ff47adba9&pid=1-s2.0-S0079642524001191-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001191","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wound healing is a complex biological process that, when impaired, can lead to the formation of scars. Electrospun nanofibrous wound dressings have emerged as a promising option for promoting scar-free wound healing. This paper explores the complex role of physical, compositional, and chemical cues, each contributing to the remarkable healing potential of these wound dressings. The physical properties of these dressings, such as porosity and mechanical characteristics, can guide cellular behaviors and promote vascularization, fostering a conducive environment for reduced scarring. Furthermore, the integration of natural polymers that mimic the skin’s extracellular matrix, known as compositional cues, adds another layer of complexity to these wound dressings. As chemical cues, therapeutic agents have demonstrated their potential to combat chronic wound scenarios leading to scar formation. However, achieving the desired therapeutic effect hinges on the nature of these agents and their controlled release. Therefore, the paper also delves into various loading techniques for tailoring the release profiles of these bioactive agents. Although electrospun nanofibrous wound dressings are promising as wound dressings, a viable commercial product remains elusive. This gap can be attributed to a lack of comprehensive in vivo studies, particularly in animal models that mimic human wound healing.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.