Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase-1 Inhibits Poly(aspartic acid) Hydrolase Activity

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-07-12 DOI:10.1021/acs.biochem.4c0012710.1021/acs.biochem.4c00127
Joshua Couch, Justin D. Marsee, Waylan W. Callaway, Thi Ho, Kathryn E. Glorioso, Michael Mercante, Britney Williams, Connor Coughran, Mitch H. Weiland and Justin M. Miller*, 
{"title":"Novel DNA-Binding Activity Exhibited by Poly(aspartic acid) Hydrolase-1 Inhibits Poly(aspartic acid) Hydrolase Activity","authors":"Joshua Couch,&nbsp;Justin D. Marsee,&nbsp;Waylan W. Callaway,&nbsp;Thi Ho,&nbsp;Kathryn E. Glorioso,&nbsp;Michael Mercante,&nbsp;Britney Williams,&nbsp;Connor Coughran,&nbsp;Mitch H. Weiland and Justin M. Miller*,&nbsp;","doi":"10.1021/acs.biochem.4c0012710.1021/acs.biochem.4c00127","DOIUrl":null,"url":null,"abstract":"<p >Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly(carboxylates), like poly(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1<sub>KT-1</sub> and PahZ2<sub>KT-1</sub> from <i>Sphingomonas</i> sp. KT-1 and PahZ1<sub>KP-2</sub> from <i>Pedobacter</i> sp. KP-2. We previously reported the X-ray crystal structure for PahZ1<sub>KT-1</sub>, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from <i>Sphingomonas</i> sp. KT-1 and <i>Pedobacter</i> sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1<sub>KT-1</sub> binds ssDNA and dsDNA with an apparent dissociation constant, <i>K</i><sub>D,app</sub> = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1<sub>KP-2</sub>. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00127","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly(carboxylates), like poly(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT-1 and PahZ2KT-1 from Sphingomonas sp. KT-1 and PahZ1KP-2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT-1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT-1 binds ssDNA and dsDNA with an apparent dissociation constant, KD,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP-2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚(天冬氨酸)水解酶-1 显示的新型 DNA 结合活性抑制了聚(天冬氨酸)水解酶的活性
可生物降解聚合材料的使用和开发已成为人们关注的焦点,以减少环境积累和对健康的潜在影响。聚(天冬氨酸)(PAA)就是这样一种材料,它是超吸收性聚(羧酸盐)(如聚(丙烯酸酯))的一种可生物降解的替代品。目前已知有三种酶可以水解 PAA:KT-1中的PahZ1KT-1和PahZ2KT-1以及KP-2中的PahZ1KP-2。我们以前曾报道过 PahZ1KT-1 的 X 射线晶体结构,该结构揭示了一个同源二聚体复合物,其强阳离子表面横跨每个单体的一侧。在这里,我们首次报道了聚合物水解酶与 DNA 结合的特性,建模数据预测多阴离子 DNA 会在阳离子底物结合表面附近结合。我们的数据显示,来自鞘氨单胞菌 KT-1 和拟杆菌 KP-2 的 PahZ1 同源物能以纳摩尔级的结合亲和力结合 ssDNA 和 dsDNA。PahZ1KT-1 结合 ssDNA 和 dsDNA 的表观解离常数 KD,app 分别为 81 ± 14 和 19 ± 1 nM,这些估计值与 PahZ1KP-2 表现出的相同行为相似。凝胶渗透色谱法数据显示,dsDNA 结合会抑制 PahZ1 催化的每种同源物的 PAA 生物降解。我们提出了一个工作模型,即 PahZ1 与细胞外生物膜 DNA 的结合有助于将水解酶定位到首先遇到 PAA 的环境中,从而提供一种降解细胞外 PAA 的机制,并有可能收获天冬氨酸用于营养吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. A GSDMD agonist boosts specific antitumor immunity Glymphatic dysfunction in PD clinical progression Dementia risk scores in diverse populations High prevalence of hepatitis B in NMOSD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1