Hyperparameter determination for GAN-based seismic interpolator with variable neighborhood search

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-06 DOI:10.1016/j.cageo.2024.105689
Daniel N. Pinheiro , Jaime C. Gonzalez , Gilberto Corso , Mesay Geletu Gebre , Carlos A.N. da Costa , Samuel Xavier-de-Souza , Tiago Barros
{"title":"Hyperparameter determination for GAN-based seismic interpolator with variable neighborhood search","authors":"Daniel N. Pinheiro ,&nbsp;Jaime C. Gonzalez ,&nbsp;Gilberto Corso ,&nbsp;Mesay Geletu Gebre ,&nbsp;Carlos A.N. da Costa ,&nbsp;Samuel Xavier-de-Souza ,&nbsp;Tiago Barros","doi":"10.1016/j.cageo.2024.105689","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an automatic global search algorithm based on the Variable Neighborhood Search (VNS) metaheuristic for tuning the hyperparameters of a generative adversarial network (GAN) seismic interpolator. We perform an exhaustive search to study the influence of each hyperparameter in the training process, and compare the proposed method with Random search and Bayesian Search. The seismic data set used for this study was synthetically modeled from a typical velocity model, estimated from a pre-salt field of the Brazilian cost. We also employ the proposed method with a real field data to show the importance and applicability of the search for optimum hyperparameters of GAN. The training data was constructed with decimated seismic data and the results were tested by comparing the reconstructed data with the original one. We performed two hyperparameter impact analyses: the first consists of an exhaustive grid exploration and the second consists of our proposed automatic exploration method using the VNS algorithm, comparing it with the other two algorithms. We concluded that the proposed method, which has a user-friendly usage, as it is almost parameter-free, can reach solutions with very good quality quickly, in any range of hyperparameter values. When compared with other methods of hyperparameter tuning, the one we propose proves to be better in the ease of configuration, while being efficient in the search process.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105689"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001729","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an automatic global search algorithm based on the Variable Neighborhood Search (VNS) metaheuristic for tuning the hyperparameters of a generative adversarial network (GAN) seismic interpolator. We perform an exhaustive search to study the influence of each hyperparameter in the training process, and compare the proposed method with Random search and Bayesian Search. The seismic data set used for this study was synthetically modeled from a typical velocity model, estimated from a pre-salt field of the Brazilian cost. We also employ the proposed method with a real field data to show the importance and applicability of the search for optimum hyperparameters of GAN. The training data was constructed with decimated seismic data and the results were tested by comparing the reconstructed data with the original one. We performed two hyperparameter impact analyses: the first consists of an exhaustive grid exploration and the second consists of our proposed automatic exploration method using the VNS algorithm, comparing it with the other two algorithms. We concluded that the proposed method, which has a user-friendly usage, as it is almost parameter-free, can reach solutions with very good quality quickly, in any range of hyperparameter values. When compared with other methods of hyperparameter tuning, the one we propose proves to be better in the ease of configuration, while being efficient in the search process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可变邻域搜索确定基于 GAN 的地震内插器的超参数
我们提出了一种基于可变邻域搜索(VNS)元启发式的自动全局搜索算法,用于调整生成式对抗网络(GAN)地震内插器的超参数。我们进行了一次穷举搜索,以研究每个超参数在训练过程中的影响,并将所提出的方法与随机搜索和贝叶斯搜索进行了比较。本研究使用的地震数据集是根据典型的速度模型合成的,该速度模型由巴西成本的盐前油田估算得出。我们还利用真实油田数据采用了所提出的方法,以显示搜索 GAN 最佳超参数的重要性和适用性。训练数据是用去矩化地震数据构建的,并通过比较重建数据和原始数据对结果进行了测试。我们进行了两项超参数影响分析:第一项包括详尽的网格探索,第二项包括我们提出的使用 VNS 算法的自动探索方法,并与其他两种算法进行了比较。我们得出的结论是,所提出的方法使用方便,几乎不需要参数,在任何超参数值范围内,都能快速获得质量非常高的解决方案。与其他超参数调整方法相比,我们提出的方法在配置简便性方面更胜一筹,同时在搜索过程中也很高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multivariate simulation using a locally varying coregionalization model Automatic variogram calculation and modeling Optimized AI-MPM: Application of PSO for tuning the hyperparameters of SVM and RF algorithms Spectral whitening based seismic data preprocessing technique to improve the quality of surface wave's velocity spectra ReUNet: Efficient deep learning for precise ore segmentation in mineral processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1