The advancement of porous bimetal nanostructures for electrochemical CO2 utilization to valuable products: Experimental and theoretical insights

{"title":"The advancement of porous bimetal nanostructures for electrochemical CO2 utilization to valuable products: Experimental and theoretical insights","authors":"","doi":"10.1016/j.ccst.2024.100266","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of coherently engineered porous bimetal (PBM) nanostructures shows great progress in electrochemical carbon dioxide (CO<sub>2</sub>) utilization. This is due to their remarkable catalytic and physicochemical merits that present an encouraging approach for CO<sub>2</sub> conversion into valuable products (i.e., fuels and chemicals). Hence, this review presents recent advances in experimental, <em>in-situ</em> analysis and theoretical studies of PBM electrocatalysts, including PBM Cu-based and PBM Cu-free electrocatalysts, toward CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) and comprehend its fundamental mechanisms. Various synthesis strategies were utilized to construct PBM nanostructures with distinct compositions, morphology, and synergism for excellent CO<sub>2</sub>RR activity, stability and product selectivity. As corroborated by theoretical calculations that revealed beneficial electronic features and reaction routes with facile adsorption energies for reactant (CO<sub>2</sub>) and intermediate species on the various active sites of PBM nanostructures in easing the CO<sub>2</sub>RR. Future research efforts should establish robust framework for experimental, <em>in-situ</em> analysis, theoretical simulations and automated machine learning in developing next-generation electrochemical CO<sub>2</sub> utilization technologies with PBM nanostructures. Finally, this study emphasizes the potential of PBM nanostructures for efficient electrochemical CO<sub>2</sub> utilization and provides a pathway to sustainable and inexpensively viable carbon-neutrality.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000782/pdfft?md5=5a085c56b579010b51ebd9502999ceb9&pid=1-s2.0-S2772656824000782-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of coherently engineered porous bimetal (PBM) nanostructures shows great progress in electrochemical carbon dioxide (CO2) utilization. This is due to their remarkable catalytic and physicochemical merits that present an encouraging approach for CO2 conversion into valuable products (i.e., fuels and chemicals). Hence, this review presents recent advances in experimental, in-situ analysis and theoretical studies of PBM electrocatalysts, including PBM Cu-based and PBM Cu-free electrocatalysts, toward CO2 reduction reaction (CO2RR) and comprehend its fundamental mechanisms. Various synthesis strategies were utilized to construct PBM nanostructures with distinct compositions, morphology, and synergism for excellent CO2RR activity, stability and product selectivity. As corroborated by theoretical calculations that revealed beneficial electronic features and reaction routes with facile adsorption energies for reactant (CO2) and intermediate species on the various active sites of PBM nanostructures in easing the CO2RR. Future research efforts should establish robust framework for experimental, in-situ analysis, theoretical simulations and automated machine learning in developing next-generation electrochemical CO2 utilization technologies with PBM nanostructures. Finally, this study emphasizes the potential of PBM nanostructures for efficient electrochemical CO2 utilization and provides a pathway to sustainable and inexpensively viable carbon-neutrality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发多孔双金属纳米结构,用于电化学利用二氧化碳生产有价值的产品:实验和理论见解
相干工程多孔双金属(PBM)纳米结构的生长在电化学二氧化碳(CO2)利用方面取得了重大进展。这是因为它们具有显著的催化和物理化学优点,为将二氧化碳转化为有价值的产品(如燃料和化学品)提供了一种令人鼓舞的方法。因此,本综述介绍了 PBM 电催化剂(包括 PBM 铜基和 PBM 无铜电催化剂)在二氧化碳还原反应(CO2RR)方面的实验、原位分析和理论研究的最新进展,并对其基本机制进行了理解。研究人员利用各种合成策略构建了具有不同成分、形态和协同作用的 PBM 纳米结构,从而获得了优异的 CO2RR 活性、稳定性和产物选择性。理论计算证实,在 PBM 纳米结构的各种活性位点上,反应物(CO2)和中间产物的吸附能量与有益的电子特征和反应路线相吻合,从而简化了 CO2RR。未来的研究工作应建立健全的实验、原位分析、理论模拟和自动机器学习框架,利用 PBM 纳米结构开发下一代二氧化碳电化学利用技术。最后,本研究强调了 PBM 纳米结构在高效电化学二氧化碳利用方面的潜力,并为实现可持续、低成本的碳中性提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breakthroughs in CH4 capture technologies: Key to reducing fugitive methane emissions in the energy sector Thermal characterization and moisture adsorption performance of calcium alginate hydrogel/silica gel/polyvinylpyrrolidone/expanded graphite composite desiccant Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1