Zhuozhen Gan , Qingyang Shao , Bingyao Ge , Qiang Wang , Xuancan Zhu
{"title":"Single-component and binary H2O and CO2 co-adsorption isotherm model on amine-functionalised Mg-Al mixed metal oxides","authors":"Zhuozhen Gan , Qingyang Shao , Bingyao Ge , Qiang Wang , Xuancan Zhu","doi":"10.1016/j.ccst.2024.100328","DOIUrl":null,"url":null,"abstract":"<div><div>Development of amine-functionalised CO<sub>2</sub> adsorbents for negative emissions is a popular research topic in the field of direct air capture (DAC). While most studies aim to improve the adsorption capacities of DAC adsorbents, it is imperative to accurately model the DAC process to understand its roles and reduce operating costs. To this end, a comprehensive understanding and systematic modelling of the adsorption behaviour of amine-functionalised materials is essential. This includes examining the effect of H<sub>2</sub>O on CO<sub>2</sub> adsorption under air conditions and desorption by steam purging. In this study, a fundamental analysis of single-component and binary H<sub>2</sub>O and CO<sub>2</sub> adsorption by amine-functionalised Mg-Al mixed metal oxides (MMOs) was performed. Single-component H<sub>2</sub>O and CO<sub>2</sub> adsorption experimental data were obtained using Guggenheim Anderson De Boer and modified Sips models, respectively. To fit the CO<sub>2</sub> uptake at different temperatures (25–75 °C), CO<sub>2</sub> isotherm models take into account both thermodynamic and diffusive factors. Subsequently, a novel mechanistic H<sub>2</sub>O and CO<sub>2</sub> co-adsorption isotherm model is developed and calibrated with the breakthrough experiments. The mechanistic co-adsorption isotherm model captured the improvement in the equilibrium CO<sub>2</sub> capacity in the presence of H<sub>2</sub>O. Moreover, the co-adsorption model considers the synergistic effects of H<sub>2</sub>O and heat. Overall, the proposed isotherm models are expected to be useful in modelling DAC processes based on novel amine-functionalised adsorbents under complex conditions and ultimately guiding DAC process design and optimisation.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100328"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Development of amine-functionalised CO2 adsorbents for negative emissions is a popular research topic in the field of direct air capture (DAC). While most studies aim to improve the adsorption capacities of DAC adsorbents, it is imperative to accurately model the DAC process to understand its roles and reduce operating costs. To this end, a comprehensive understanding and systematic modelling of the adsorption behaviour of amine-functionalised materials is essential. This includes examining the effect of H2O on CO2 adsorption under air conditions and desorption by steam purging. In this study, a fundamental analysis of single-component and binary H2O and CO2 adsorption by amine-functionalised Mg-Al mixed metal oxides (MMOs) was performed. Single-component H2O and CO2 adsorption experimental data were obtained using Guggenheim Anderson De Boer and modified Sips models, respectively. To fit the CO2 uptake at different temperatures (25–75 °C), CO2 isotherm models take into account both thermodynamic and diffusive factors. Subsequently, a novel mechanistic H2O and CO2 co-adsorption isotherm model is developed and calibrated with the breakthrough experiments. The mechanistic co-adsorption isotherm model captured the improvement in the equilibrium CO2 capacity in the presence of H2O. Moreover, the co-adsorption model considers the synergistic effects of H2O and heat. Overall, the proposed isotherm models are expected to be useful in modelling DAC processes based on novel amine-functionalised adsorbents under complex conditions and ultimately guiding DAC process design and optimisation.