Application Research of Parameter Uncertainty Optimization Method in Steering Detection and Correction System

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-04-22 DOI:10.1109/JRFID.2024.3392444
Jiahao Yang;Ming Xu;Longhua Ma;Fangle Chang;Wenxiang Wu
{"title":"Application Research of Parameter Uncertainty Optimization Method in Steering Detection and Correction System","authors":"Jiahao Yang;Ming Xu;Longhua Ma;Fangle Chang;Wenxiang Wu","doi":"10.1109/JRFID.2024.3392444","DOIUrl":null,"url":null,"abstract":"A novel heading angle detection and compensation method is presented with the aim of addressing the navigation and localization accuracy challenges that unmanned robots encounter in their daily inspection jobs, thereby significantly raising the bar for smart port building and promoting the development of ports of superior quality. The Extended Kalman Filter (EKF) algorithm and a Global Navigation Satellite System (GNSS) Inertial Navigation System (INS)/Magnetometer combination navigation technology form the basis of this strategy. The suggested deviation detection and compensating method greatly enhances the navigation system’s performance when compared to the conventional EKF algorithm. Furthermore, we improved the navigation system’s ability to adapt to complex surroundings and sudden changes by adding the Particle Swarm Optimization (PSO) algorithm to the process. This allowed us to further optimize the system parameters based on the original innovation. This development is critical to enhancing unmanned robot navigation accuracy at smart ports and providing robust technical support for the growth of port automation and intelligence.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506792/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel heading angle detection and compensation method is presented with the aim of addressing the navigation and localization accuracy challenges that unmanned robots encounter in their daily inspection jobs, thereby significantly raising the bar for smart port building and promoting the development of ports of superior quality. The Extended Kalman Filter (EKF) algorithm and a Global Navigation Satellite System (GNSS) Inertial Navigation System (INS)/Magnetometer combination navigation technology form the basis of this strategy. The suggested deviation detection and compensating method greatly enhances the navigation system’s performance when compared to the conventional EKF algorithm. Furthermore, we improved the navigation system’s ability to adapt to complex surroundings and sudden changes by adding the Particle Swarm Optimization (PSO) algorithm to the process. This allowed us to further optimize the system parameters based on the original innovation. This development is critical to enhancing unmanned robot navigation accuracy at smart ports and providing robust technical support for the growth of port automation and intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
参数不确定性优化方法在转向检测与校正系统中的应用研究
本文介绍了一种新颖的航向角检测和补偿方法,旨在解决无人机器人在日常检查工作中遇到的导航和定位精度难题,从而大大提高智能港口建设的标准,促进高质量港口的发展。扩展卡尔曼滤波(EKF)算法和全球导航卫星系统(GNSS)惯性导航系统(INS)/磁力计组合导航技术构成了这一战略的基础。与传统的 EKF 算法相比,建议的偏差检测和补偿方法大大提高了导航系统的性能。此外,我们还通过添加粒子群优化(PSO)算法,提高了导航系统适应复杂环境和突发变化的能力。这使我们能够在原始创新的基础上进一步优化系统参数。这一研发成果对于提高智能港口无人机器人导航精度至关重要,并为港口自动化和智能化的发展提供了强有力的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag A Fully-Passive Frequency Diverse Lens-Enabled mmID for Precise Ranging and 2-Axis Orientation Detection in Next-Generation IoT and Cyberphysical Systems A Compact Slot-Based Bi-Directional UHF RFID Reader Antenna for Far-Field Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1