Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE journal of radio frequency identification Pub Date : 2024-10-28 DOI:10.1109/JRFID.2024.3487303
Stefan Glüge;Matthias Nyfeler;Ahmad Aghaebrahimian;Nicola Ramagnano;Christof Schüpbach
{"title":"Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments","authors":"Stefan Glüge;Matthias Nyfeler;Ahmad Aghaebrahimian;Nicola Ramagnano;Christof Schüpbach","doi":"10.1109/JRFID.2024.3487303","DOIUrl":null,"url":null,"abstract":"The proliferation of drones, or unmanned aerial vehicles (UAVs), has raised significant safety concerns due to their potential misuse in activities such as espionage, smuggling, and infrastructure disruption. This paper addresses the critical need for effective drone detection and classification systems that operate independently of UAV cooperation. We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones using spectrogram data derived from consecutive Fourier transforms of signal components. The focus is on model robustness in low signal-to-noise ratio (SNR) environments, which is critical for real-world applications. A comprehensive dataset is provided to support future model development. In addition, we demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna, validated through real-world field testing. On our development dataset, all models consistently achieved an average balanced classification accuracy of \n<inline-formula> <tex-math>$\\ge 85\\%$ </tex-math></inline-formula>\n at SNR \n<inline-formula> <tex-math>$\\gt -12$ </tex-math></inline-formula>\ndB. In the field test, these models achieved an average balance accuracy of >80%, depending on transmitter distance and antenna direction. Our contributions include: a publicly available dataset for model development, a comparative analysis of CNN for drone detection under low SNR conditions, and the deployment and field evaluation of a practical, low-cost detection system.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"8 ","pages":"821-830"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737118","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737118/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of drones, or unmanned aerial vehicles (UAVs), has raised significant safety concerns due to their potential misuse in activities such as espionage, smuggling, and infrastructure disruption. This paper addresses the critical need for effective drone detection and classification systems that operate independently of UAV cooperation. We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones using spectrogram data derived from consecutive Fourier transforms of signal components. The focus is on model robustness in low signal-to-noise ratio (SNR) environments, which is critical for real-world applications. A comprehensive dataset is provided to support future model development. In addition, we demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna, validated through real-world field testing. On our development dataset, all models consistently achieved an average balanced classification accuracy of $\ge 85\%$ at SNR $\gt -12$ dB. In the field test, these models achieved an average balance accuracy of >80%, depending on transmitter distance and antenna direction. Our contributions include: a publicly available dataset for model development, a comparative analysis of CNN for drone detection under low SNR conditions, and the deployment and field evaluation of a practical, low-cost detection system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低信噪比环境中使用卷积神经网络进行稳健的低成本无人机探测和分类
无人机或无人驾驶飞行器(UAV)的激增引起了人们对安全问题的极大关注,因为它们有可能被滥用于间谍、走私和基础设施破坏等活动。本文探讨了对独立于无人机合作运行的有效无人机检测和分类系统的迫切需求。我们对各种卷积神经网络(CNN)进行了评估,看它们是否能利用从信号成分的连续傅里叶变换中获得的频谱图数据对无人机进行检测和分类。重点是模型在低信噪比(SNR)环境中的鲁棒性,这对实际应用至关重要。我们提供了一个全面的数据集,以支持未来的模型开发。此外,我们还展示了一个使用标准计算机、软件定义无线电(SDR)和天线的低成本无人机探测系统,并通过实际现场测试进行了验证。在我们的开发数据集上,所有模型在信噪比为 $\gt -12$ dB 的情况下,平均平衡分类准确率始终保持在 $\ge 85\%$ 的水平。在现场测试中,根据发射机距离和天线方向的不同,这些模型的平均平衡准确率大于 80%。我们的贡献包括:用于模型开发的公开数据集、用于低信噪比条件下无人机检测的 CNN 比较分析,以及实用、低成本检测系统的部署和现场评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
News From CRFID Meetings Guest Editorial of the Special Issue on RFID 2023, SpliTech 2023, and IEEE RFID-TA 2023 IoT-Based Integrated Sensing and Logging Solution for Cold Chain Monitoring Applications Robust Low-Cost Drone Detection and Classification Using Convolutional Neural Networks in Low SNR Environments Overview of RFID Applications Utilizing Neural Networks A 920-MHz, 160-μW, 25-dB Gain Negative Resistance Reflection Amplifier for BPSK Modulation RFID Tag
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1