Optimal placement of electric vehicle charging infrastructures utilizing deep learning

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2024-06-20 DOI:10.1049/itr2.12527
Mohamad Alansari, Ameena Saad Al-Sumaiti, Ahmed Abughali
{"title":"Optimal placement of electric vehicle charging infrastructures utilizing deep learning","authors":"Mohamad Alansari,&nbsp;Ameena Saad Al-Sumaiti,&nbsp;Ahmed Abughali","doi":"10.1049/itr2.12527","DOIUrl":null,"url":null,"abstract":"<p>The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass-market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time-series statistical characteristics, and the deep learning Attention-based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time-series data. The model's effectiveness was validated through comparative analyses against state-of-the-art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12527","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12527","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass-market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time-series statistical characteristics, and the deep learning Attention-based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time-series data. The model's effectiveness was validated through comparative analyses against state-of-the-art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习优化电动汽车充电基础设施的布局
交通部门造成的空气污染日益严重,促使各国必须采用电动汽车(EV)。为了推广电动汽车,充电基础设施的选址应该是最佳的,这样既能满足大众市场的消费需求,又能减少政府开支。本研究以阿拉伯联合酋长国(UAE)迪拜为案例,规划了两类充电基础设施的位置,即充电站(CS)和动态无线充电(DWC)基础设施。在这项研究中,迪拜根据其新的地址系统被划分为 14 个区,两类充电基础设施的分配基于人口增长预测、电动汽车采用预测和其他因素,目的是满足消费者的需求并最大限度地减少政府支出。该提案引入了一种新颖的混合预测模型,整合了用于捕捉时间序列统计特征的季节性自回归综合移动平均模型(SARIMAX)和用于对时间序列数据中的非线性关系建模的深度学习注意力卷积神经网络(ACNN)的优势。通过在标准基准上与最先进的(SOTA)模型进行比较分析,验证了该模型的有效性,结果表明该模型有显著改进:平均绝对误差 (MAE) 降低了 29.70%,均方根误差 (RMSE) 降低了 19.15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1